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a b s t r a c t

The Fast Gauss Transform is an algorithm for summing a series of Gaussians which is some-
times much faster than direct summation. Gaussian series in d dimensions are of the formPN

j¼1 kj expð�½a=h�2 kx� xjk2Þ where the xj are the centers, h is the average separation
between centers and a is the relative inverse width parameter. We show that the speed-
up of the Fast Gauss Transform is bounded by a factor XðaÞ. When a� 1, X can be large.
However, when applied to Gaussian radial basis function interpolation, it is difficult to
apply the Gaussian basis in this parameter range because the interpolation matrix is expo-
nentially ill-conditioned: the condition number j � ð1=2Þ exp p2

4a2

� �
for a uniform, one-

dimensional grid, and larger still in two dimensions or when the grid is irregular. Further-
more, the Gaussian RBF interpolant is ill-conditioned for most series in the sense that the
interpolant is the small difference of terms with exponentially large coefficients. Fornberg
and Piret developed a ‘‘QR-basis” that ameliorates this difficulty for approximations on the
surface of a sphere, but because the recombined basis functions are perturbed spherical
harmonics, not Gaussians, the Fast Gauss Transform is no longer applicable. The solution
of the interpolation matrix system by a preconditioned iteration is less sensitive to condi-
tion numbers than direct methods because iterations are self-correcting and also because
the preconditioning reduces the spread of the eigenvalues. However, each iteration
requires a matrix–vector multiply which is fast only if this operation can be performed
by some species of Fast Summation. When a � Oð1Þ, alas, we show that X is not large
and the Fast Gauss Transform is not accelerative. Gaussian RBFs are unusual among RBF
species through the absence of long-range interactions due to the exponential decay of
the Gaussians with distance from their centers; many other RBF species do have long-range
interactions, and it is well-established that these can be accelerated by fast multipole and
treecode algorithms. We offer a less rigorous scale analysis argument to explain why the
underlying difficulty in accelerating short-range interactions is not peculiar to the Gaussian
RBF basis or to the Fast Gauss Transform, but rather is likely to be a generic difficulty in
accelerating the short-range interactions of almost any RBF basis with almost any Fast
Summation.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Radial basis functions (RBFs) have been successfully applied to solve many species of partial differential equations. How-
ever, most of these applications have been restricted to rather small N where N is the total number of degrees of freedom. For
N 6 4000, it does not matter that the RBF interpolation, differentiation and summation matrices are dense N � N matrices
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because these can still be inverted or multiplied in a few minutes on a workstation. Because of its ease of programming, RBFs
are a great ‘‘small-N” method. Applications to ‘‘high-N” problems will be prohibitively costly, however, unless some analogue
to the Fast Fourier Transform can be found.

Truncation, short-range interactions and long-range interactions offer what military strategists call ‘‘lines of attack”. If the
RBFs are spatially localized, as true of Gaussians, then great savings can be realized in summation at a point x by discarding
the very tiny contributions from RBFs whose peaks are sufficiently distant from x. This gives the ‘‘Truncated Gauss Trans-
form” for Gaussians, and similarly for other RBFs that decay exponentially away from their peaks such as sech’s.

Fast Summation methods, which we shall use as a shorthand for a broad family of algorithms that include the Fast Mul-
tipole Method, Fast Gauss Transform, and treecodes, are designed to evaluate a summation of N terms at each of L points
where L P OðNÞ. Instead of evaluating the sum at a given point independently of all the other points at a cost of OðNÞ oper-
ations per point, Fast Summations share work between the sums at different points so as to greatly reduce the cost. Many
species of Fast Summations including the Fast Gauss Transform replace interactions among particles, vortices or radial basis
functions by a proxy series, a sort of mathematical stunt double. Some Fast Summations attack only long-range interactions,
some only short-range interactions, and some both kinds of interactions.

For example, the earliest Fast Summation method, the ‘‘Fast Multipole Method”, was invented to accelerate computation
of the long-range gravitational interactions among N stars. The stars — RBFs in our application — are grouped into clusters
containing NB elements; the combined influence of all the stars in the group is approximated by a series of negative powers
of the distance (‘‘multipole expansion”) from a group of stars to the evaluation point. If the proxy series can be truncated to
only M terms where M � NB, then the summation is accelerated by a factor of X � M=NB. (A full list of symbols is given in
Table 1.) Treecodes are similar but use a Taylor series as a proxy [33].

Because both Fast Summations and RBFs have bloomed into a bewildering variety of genera and species, we shall focus
primarily on two summation methods for one type of RBFs: the Fast Gauss Transform (FGT) and Truncated Gauss Transform
(TGT) for Gaussian RBFs. The FGT and TGT are illuminating to analyze because both are particularly tailored to Gaussians.
Gaussian RBFs are useful examples because (i) they are popular [45,51,52,54,12,13,30,34,37,49,59,3],1 widely used and con-
verge exponentially fast for smooth functions f ðxÞ and (ii) have only short-range interactions, allowing us to focus on that part of
summing RBFs where Fast Summations have difficulties. (As we shall explain later, long-range interactions, for those RBF spe-
cies that have them, are well accelerated by some Fast Summations.)

In d dimensions where d is an arbitrary positive integer, a Gaussian RBF approximation to a function f ðxÞ has the form:

f ðxÞ ¼
XN

j¼1

kj expð�ða=hÞ2 kx� xjk2
2Þ ð1Þ

where x is a point in Rd, the kj are the RBF coefficients and the xj are the ‘‘centers”, a is a user-chosen constant (‘‘inverse width
parameter”) and h is the average grid spacing; one of the charms of RBFs is that the grid can be irregular. Because the basis
functions are not orthogonal, the RBF coefficients kj are almost always found by interpolation at a set of interpolation points

Table 1
List of symbols.

an nth Chebyshev coefficient
d Spatial dimension
FGT Fast Gauss Transform
h Average grid spacing
IFGT Improved (Taylor series-based) Fast Gauss Transform
m Radius from an RBF center in units of h
NB Number of RBFs with centers in a given block
p Degree of Hermite series or Chebyshev series
~p p� 1, one less than the degree of a Taylor series
P One less than the degree of Taylor series
r ð� �s=

ffiffiffi
2
p
Þ length of a side of a block relative to the RBF e-folding scale

R Parameter in Taylor series-based IFGT
q Exponent of Generalized Multiquadric
s Length of one side of the block enclosing a cluster of RBFs
x Coordinate (one dimension)
x Coordinate (two or more dimensions)
TGT Truncated Gauss Transform
a ð¼ �hÞ inverse width relative to the grid spacing
� Absolute inverse width of the RBFs
kj Coefficient of jth term in RBF series
/ðrÞ RBF function
q ð� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð1Þ=p

p
Þ parameter that must be small for small Hermite series error

1 The Web of Science returned 197 articles for the keyword ‘‘Gaussian radial basis function”. We do not cite them all, but it should be noted that Gaussian RBFs
are very popular in neural networks.
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