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a b s t r a c t

Numerical techniques for discretization of velocity space in continuum kinetic calculations
are described. An efficient spectral collocation method is developed for the speed coordi-
nate – the radius in velocity space – employing a novel set of non-classical orthogonal
polynomials. For problems in which Fokker–Planck collisions are included, a common sit-
uation in plasma physics, a procedure is detailed to accurately and efficiently treat the field
term in the collision operator (in the absence of gyrokinetic corrections). When species
with disparate masses are included simultaneously, a careful extrapolation of the Rosenb-
luth potentials is performed. The techniques are demonstrated in several applications,
including neoclassical calculations of the bootstrap current and plasma flows in a tokamak.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

A ubiquitous situation in numerical kinetic calculations is that the distribution function must be discretized in a manner
allowing both accurate integration and accurate differentiation. Integration is needed because typically moments of the dis-
tribution function, such as density and velocity, are of interest. Differentiation is needed both for the collisionless terms in
the kinetic equation and also for velocity-space diffusion in collisions. Spherical or cylindrical coordinates are natural for
velocity space, meaning the normalized spherical or cylindrical radius (speed) coordinate x lies in the semi-infinite domain
½0;1Þ. The distribution function often has a Maxwellian envelope, meaning it behaves as / expð�x2Þ as x!1.

Many discretization schemes for the radial velocity coordinate are possible and many have been explored in the literature
[1–7], each with advantages and disadvantages regarding the above requirements. A uniform grid allows modest accuracy at
both integration and differentiation using finite difference/volume/element methods. To use a uniform grid, x may either be
mapped to a finite interval using a coordinate transformation, or else the fact that the distribution function is exponentially
small for x J 6 may be used to truncate the x grid above some xmax. Alternatively, Gaussian abscissa permit extremely accu-
rate integration but generally only low-order differentiation if finite difference/volume/element methods are applied to the
unequally spaced grid. A Chebyshev grid permits both spectrally accurate differentiation and integration [8,9]. However,
Chebyshev grids involve a high density of nodes near the endpoints of a finite interval, so unless a transformation is applied,
Chebyshev grids are therefore poorly suited for the semi-infinite domain of x and for the / expð�x2Þ dependence typical of
distribution functions. Methods using Laguerre or associated Laguerre polynomials have also been used, but as we will show,
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these methods do not always perform as well as one might hope due to a nonanalytic Jacobian in the coordinate transfor-
mation from energy to speed [2].

In this work, we present a new approach for discretizing velocity space. The approach permits both spectrally accurate
integration and differentiation on the semi-infinite domain ½0;1Þ for functions with Maxwellian-like / expð�x2Þ depen-
dence for large normalized speed x. The method is collocation rather than modal in nature, i.e. the function is known on
a set of grid points (abscissae) rather than being explicitly expanded in a set of modes. As such, the method is well suited
for nonlinear computations in addition to linear ones.

Our method derives from a set of previously unexplored orthogonal polynomials. The semi-infinite integration domain in
the orthogonality relation for these new polynomials is identical to that of the Laguerre polynomials. However, the use of a
different weight e�x2 in place of e�y results in polynomials with superior properties for the calculations of interest.

In kinetic calculations for plasmas, it is often important to accurately include collisions in the kinetic equation, and
the Fokker–Planck operator [10] is the best available description of collisions. This operator may be written in terms of
‘‘Rosenbluth potentials’’, which are defined in terms of the distribution function through a pair of Poisson equations. A
complication of the Fokker–Planck operator is that the Rosenbluth potentials vary as powers of x rather than as expð�x2Þ
for large x, which means discretization schemes that work well for the distribution function may not work well for the
potentials. Accurate numerical schemes for handling the Fokker–Planck operator in plasma computations have been a
subject of great interest [11,12,5,13]. Here we will develop an efficient approach to incorporating the Rosenbluth poten-
tials in the kinetic equation, carefully accounting for their behavior at large x to maintain high precision even for coarse
grid resolution.

The new techniques we discuss are demonstrated in several applications. First, we compute the resistivity of a plasma.
Second, we compute the bootstrap current in a tokamak plasma. Lastly, we calculate the flows of multiple ion species in
a tokamak. These computations require the solution of equations in which both the collision operator and other kinetic
terms appear. Using the new velocity discretization described here, we find that only 4–6 grid points in x are required for
the desired level of convergence. For gyrokinetic simulations of plasma turbulence, which commonly use � 16 energy grid-
points, this new energy grid may reduce requirements of time, memory, or number of processors.

2. Spectral collocation scheme for velocity space

For a variety of problems in kinetic theory, either with or without collisions, it is useful to represent the distribution func-
tion in either spherical or cylindrical coordinates in velocity space. The dimensional coordinates v (the spherical radius in
velocity space) or v? (the cylindrical radius in velocity space) then arise. Either coordinate may be normalized for numerical
work by the thermal speed v th ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
where T is a typical temperature and m is the mass of the particle species. We de-

fine x ¼ v=v th or x ¼ v?=v th as appropriate.
For large x, distribution functions decay exponentially as / expð�x2Þ. It is therefore natural to represent the distribution

function as expð�x2Þ times a sum of polynomials Pk
n that are orthogonal according to the relevant weight and domain:Z 1

0
Pk

NðxÞP
k
nðxÞxke�x2

dx ¼ Mk
ndN;n ð1Þ

where k is any number greater than �1, and Mk
n is some normalization. Notice (1) differs from the defining orthogonality

relations for both the associated Laguerre and Hermite polynomials, which are, respectively,Z 1

0
Lm

N ðyÞL
m
n ðyÞyme�ydy ¼ Cðnþmþ 1Þ

n!
dN;n ð2Þ

(i.e. polynomials in x2 rather than x) andZ 1

�1
HNðxÞHnðxÞe�x2

dx ¼ 2nn!
ffiffiffiffi
p
p

dN;n ð3Þ

(different range of integration than (1)). Laguerre polynomials are the special case of associated Laguerre polynomials with
m ¼ 0. There are several reasons why it is preferable to use polynomials in speed x rather than polynomials in energy y ¼ x2,
i.e. why the new polynomials are preferable to Laguerre or associated Laguerre polynomials. These reasons will be developed
throughout the remainder of this section. As initial motivation, consider that the new polynomials can represent both even
and odd powers of v or v?, whereas the associated Laguerre polynomials can represent only even powers.

In our experience, the choice k ¼ 0 tends to yield the fastest convergence for the problems we consider in the following
sections, so for the rest of this paper we consider the polynomials Pn ¼ P0

n. It is straightforward to generalize all results and
algorithms presented below to the case of different k.

The first few polynomials may be computed iteratively using the following Gram-Schmidt procedure (though this method
turns out to be poorly conditioned when n is large). The polynomial PnðxÞ has nþ 1 coefficients, which may be determined by
imposing orthogonality with respect to P0 through Pn�1 and enforcing the normalization, for a total of nþ 1 constraints. The
first few polynomials Pn, normalized so the leading coefficient is 1, are thus
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