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gates the time-reversibility properties of various solvers designed for incompressible
Navier-Stokes computations. The test case is the inviscid Taylor-Green vortex, which
becomes “turbulent” before the time is reversed to try to recover the initial condition.
The simulations are performed using high and low order finite difference solvers as well
as using a pseudo-spectral solver. Various time-stepping schemes are also investigated.

Iéﬁjl,::oggiati ons Although the flow statistics are significantly affected by the accuracy of the space discret-
Time reversibility ization, the time-reversibility is not because most space-discretizations are time-reversible
Taylor-Green vortex for an exact time-stepping. The crucial factor for time-reversibility is the accuracy of the
Energy conservation time-stepping scheme and its interaction with the space-discretization. Furthermore, an
Navier-Stokes solvers important practical requirement for the solver is to be energy conserving in order to avoid
Discretization numerical instability. An energy conserving solver using an accurate time-stepping is then

able to go back almost perfectly from a complex “turbulent” flow to the simple initial con-
dition. Therefore, we propose that this constitutes a severe and useful benchmark that
Navier-Stokes solvers should challenge. The present investigations and their conclusions
are also supported by parallel 1-D investigations, using the non-linear convection equation
(inviscid Burgers) and the linear convection equation.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

It is easily verified that the incompressible continuous Euler equations

V.u=0, (1a)
%—?Jr(u-V)u:fVP, (1b)

with P = p/p the reduced pressure, are time-reversible. If (u(x, t), p(X, t)) is a solution of the system, then (—u(x, —t), p(X, —t))
is also a solution. Therefore, if u*(x) is the solution at time t* of the problem with an initial condition u,(x) then —u,(x) is the
solution at time t* of the problem with an initial condition —u*(x). It is legitimate to expect a numerical discretization of the
Euler equations to preserve this time-reversibility property. Note also that the time-reversibility property was previously
used by Carati et al. [1] to assess models for explicitly filtered LES because the explicit filtering does not alter the time-revers-
ibility of the equations.
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The aim of this paper is to investigate the time-reversibility property of various Navier-Stokes solvers running with the
viscosity deliberately set to zero and without any subgrid-scale model. A fully periodic test case was chosen to avoid the
possible influence of the boundary conditions. The present study is thus entirely focused on the behavior of the discretization
of the convective term and its interaction with the time stepping scheme. This is indeed the more relevant term in high Rey-
nolds number flows.

The initial condition of the present investigation is the simple analytical Taylor-Green vortex. Then, the flow freely
evolves and eventually becomes “turbulent”. Small-scales are generated and, since there is no viscosity, the energy spectrum
E(k) tends to a k? behavior at the high wave numbers. Then, the sign of the velocities is changed and the simulation is run
further. This is equivalent to going back in time. The ability of the solver to recover the initial condition is then assessed.

Three different energy-conserving space discretizations are compared in the present study: two centered finite difference
schemes and a pseudo-spectral method. The first finite difference scheme is second order accurate whereas the second one is
fourth order accurate. In all three solvers, two time-stepping schemes are available: a second order Adams-Bashforth
scheme (AB2) and a third order Runge-Kutta method (RK3).

It is observed that the accuracy of the spatial discretization does not directly influence the time-reversibility of the solver;
even though the flow statistics strongly depend on it. An energy conserving scheme is however absolutely required since, on
the one hand, any spurious injection of energy leads to a fast blow up of the computation and, on the other hand, a system-
atic dissipation of energy obviously makes it impossible to recover the initial condition. Provided the energy is conserved, the
time-reversibility mainly depends on the accuracy of the time discretization scheme because it is shown that the solvers
would be perfectly reversible if the time-stepping was exact. Hence, for the same spatial discretization, RK3 performs much
better than AB2 (which is known to be slightly unstable for purely convective linear problems, even when using a small time
step, as done is this investigation). However, the space discretization also interferes with the time-stepping because the
accuracy of the time-stepping depends on its eigenvalues. Consequently, in all cases, the present second order finite differ-
ence solver is the best at recovering the initial condition among the studied schemes. As the lack of exact energy conserva-
tion of the discrete solver is also due to time stepping errors, there is a strong correlation between energy conservation and
time-reversibility.

To recover well enough the initial condition, one needs an energy conserving space discretization and an accurate time-
stepping. This also ensures that the energy will be very well conserved. Therefore, the present time-reversibility test is pro-
posed as a sensitive test for energy conserving schemes. Those are especially important for Navier-Stokes solvers and also for
LES solvers that use explicit subgrid-scale modeling. They are also important to study the non-linear dynamics of the Euler
equation (e.g., see [2]) and to try to give answers to fundamental questions such as the possible finite time singularity in the
Euler equations. Here, especially, the effects of the numerics must be sufficiently understood before any definite answer can
be given.

This paper is organized as follows. Section 2 briefly describes the solvers assessed in this study. Then, Section 3 presents
the Taylor-Green vortex test case and the numerical parameters used. The results obtained on this test case are presented in
Section 4. They are further analyzed in Section 5 where they are compared to 1D results in order to clearly identify the factors
governing the time-reversibility properties.

2. Numerical methods

This section describes first the two finite difference solvers (referred to as FD2 and FD4) and then the pseudo-spectral
solver (PS) used in this investigation.

2.1. Finite difference solvers

Both finite difference codes solve the incompressible Navier-Stokes equations on Cartesian MAC grids. The equations are
integrated in time using a fractional-step method introducing the pressure gradient in the computation of the intermediate
velocity. It was called the “delta” form for the pressure by Lee et al. [3]. This form allows simple boundary conditions for the
pressure and the intermediate velocity field. When the convective term is integrated using AB2, the time-stepping scheme
reads

u —u’ _ 1 n n-1 il

i - g (W -HT) - (2a)
vzq):AltV-u*, (2b)
un+l —_u
Va2 (2¢)
P =P 4 g, (2d)

where H" is the convective term, u* is the intermediate velocity field and P" is the reduced pressure. Two time-step-
ping schemes are available in both solvers: AB2 and RK3. In RK3, the divergence-free constraint in enforced at each
substep.
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