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a b s t r a c t

A time stable discretization is derived for the second-order wave equation with discontin-
uous coefficients. The discontinuity corresponds to inhomogeneity in the underlying med-
ium and is treated by splitting the domain. Each (homogeneous) sub domain is discretized
using narrow-diagonal summation by parts operators and, then, patched to its neighbors
by using a penalty method, leading to fully explicit time integration. This discretization
yields a time stable and efficient scheme. The analysis is verified by numerical simulations
in one-dimension using high-order finite difference discretizations, and in three-dimen-
sions using an unstructured finite volume discretization.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

In many applications, such as general relativity [33,3], seismology [15,36], oceanography [27], acoustics [35,30,7,1,8] and
electromagnetics [37,9], the underlying equations are systems of second-order hyperbolic partial differential equations.
However, as pointed out in [18], with very few exceptions the equations are rewritten and solved as a system of first-order
equations. There are three obvious drawbacks with this approach: (1) the number of unknowns is doubled, (2) spurious
oscillations due to unresolved features might be introduced, and (3) double resolution (both in time and in each of the spatial
dimensions) is required to obtain the same accuracy. The reasons for solving the equations on first-order form are most likely
related to the maturity of CFD, that has evolved during the last 40 years. Many of the stability issues for first-order hyperbolic
problems have already been addressed.

For wave-propagation problems, the computational domain is often large compared to the wavelengths, which means
that waves have to travel long distances (or correspondingly long times). It can be shown that high-order accurate time
marching methods, as well as high-order spatially accurate schemes (at least third-order) are more efficient [21] for prob-
lems on smooth domains. Such schemes, although they might be G–K–S stable [10] (convergence to the true solution as
Dx! 0), may exhibit a non-physical growth in time [4], for realistic mesh sizes. It is therefore important to devise schemes
that do not allow a growth in time that is not called for by the differential equation. Such schemes are called strictly (or time)
stable.

High-order accurate finite difference methods (HOFDM) are widely used for hyperbolic problems written on first-order
form. For problems with discontinuous coefficients, the formal order of accuracy reduces to first-order [11,12,2] with no spe-
cial treatment of the discontinuity. In this paper we will focus the attention to second-order formulations of the acoustic
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wave equation in discontinuous media. One of the main motivations with this paper is to present a method that will recover
high-order accuracy in the presence of discontinuous coefficients.

Traditionally, there have been essentially two approaches of handling the discontinuity, sometimes referred to as the het-
erogeneous and the homogeneous formulations [15]. In the heterogeneous approach [35,30,7], the discontinuity (here de-
noted discontinuous interface) is treated by taking an average ‘‘smoothing” of the spatially varying coefficients to recover
stability. The benefit with this technique is that irregular shaped discontinuous interfaces are handled with no special treat-
ment. However, the formal order of accuracy reduces to first-order.

The second approach to handle the discontinuity is to employ a domain decomposition technique and solve for the inter-
face (jump) conditions. There are different techniques of imposing the interface conditions. In [1] a second-order FD method
is introduced where the solution is based on the introduction of auxiliary Lagrange multipliers. A drawback with this tech-
nique is that a huge system of linear equations has to be solved at each time-step. It is unclear if this technique can be ex-
tended to handle irregular shaped discontinuous interfaces, and how to obtain higher-order accuracy. A strictly stable
HODFM for the wave equations in discontinuous media was constructed in [24] by combining second-derivative summa-
tion-by-parts (SBP) operators (constructed in [23]) with the projection method [28,29] to impose the boundary and the dis-
continuous interface (jump) conditions. The drawback with this approach is that it cannot easily be extended to handle
variable coefficients (except pice-wise constant coefficients), complex geometries and irregular shaped discontinuous inter-
faces. In [18,19,17,16] a second-order accurate FD method for the acoustic wave equation on second-order form is con-
structed, where the discontinuity and complex geometry are handled by embedding the domain into a Cartesian grid,
making use of ghost-points and Lagrange interpolation to impose the boundary and interface conditions. It is unclear if
the embedded boundary method can be extended to higher-order accuracy. Another good candidate is the discontinuous
Galerkin (DG) method, which combines both unstructured capability and higher-order accuracy (also in discontinuous med-
ia). DG have been implemented successfully in 2-D for both the acoustic wave equation [8] and Maxwell’s equations [9] on
second-order form. However, the efficiency of DG applied to systems of second-order hyperbolic equations on large 3-D
applications is an open question.

In this paper we focus on: (1) deriving strictly stable HOFDM for the acoustic wave equation in discontinuous media, by
combining second-derivative SBP operators and the simultaneous approximation term (SAT) method [5], and (2) introducing
the technique in complex geometries by making use of the discrete Laplacian operator used in CDP1 (an unstructured finite
volume flow solver developed as part of Stanford’s DOE-funded ASC Alliance program to perform LES in complex geometries).
This approach is somewhat related to the DG method since they both make use of the penalty technique to handle the discon-
tinuity in a truly non-overlap fashion.

The three reasons for introducing the SAT method instead of the recently developed projection method [24] to impose the
discontinuous interface conditions are the following: (1) it is easier to implement (although, a detailed study is omitted
here), (2) it is not limited to piecewise constant coefficients (see [24]), and (3) it is much more accurate (as will be shown
in Section 4).

The two main reasons for introducing computational tools from CDP are the following: (1) it allows us to handle huge
problems in complex geometries, and (2) it makes it easier to isolate and verify the accuracy and stability properties of
the Laplacian operator used in CDP. (In spite of it’s simplicity the second-order wave equation imposes a stricter stability
requirement [24] on the discrete Laplacian operator than when used for parabolic problems like the Navier–Stokes
equations).

In Section 2 we introduce some definitions and discuss the SBP property for the 1-D case, and show how to impose the
boundary and interface conditions in discontinuous media using SAT. In Section 3 we will show how to implement this tech-
nique in complex geometries using the unstructured finite volume method. In Section 4 we will verify the accuracy and sta-
bility properties, by performing numerical computations in 1-D and 3-D. A direct comparison between the SAT method and
the Projection method will be done for the 1-D case. In Section 5 we present our conclusions.

In this article, we only consider acoustic waves. The extension to handle for example elastic waves [15,2,36] with an anal-
ogous approach will be dealt with in a forthcoming paper.

2. The finite difference method

For clarity we will restrict the analysis to 1-D in this section. The extension to 2-D and 3-D (see for example [24,26,25]) is
straightforward using 1-D SBP finite-difference operators.

We begin with a short description and some definitions (for more details, see [20,31,23]). Let the inner product for real-
valued functions u; v 2 L2½�1;1� be defined by ðu; vÞ ¼

R 1
�1 u v w dx, wðxÞ > 0, and let the corresponding norm be

kuk2
w ¼ ðu;uÞ. The domain (�1 6 x 6 1) is discretized using 2N + 1 equidistant grid points

xi ¼ i h; i ¼ 0;1 . . . ;2N; h ¼ 2
N
:

1 CDP is named after Charles David Pierce (1969–2002).

8754 K. Mattsson et al. / Journal of Computational Physics 227 (2008) 8753–8767



Download English Version:

https://daneshyari.com/en/article/520434

Download Persian Version:

https://daneshyari.com/article/520434

Daneshyari.com

https://daneshyari.com/en/article/520434
https://daneshyari.com/article/520434
https://daneshyari.com

