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a b s t r a c t

In this work, a Fourier solver [B.F. McMillan, S. Jolliet, A. Bottino, P. Angelino, T.M. Tran, L.
Villard, Comp. Phys. Commun. 181 (2010) 715] is implemented in the global Eulerian gyr-
okinetic code GT5D [Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49 (2009)
065029] and in the global Particle-In-Cell code ORB5 [S. Jolliet, A. Bottino, P. Angelino, R.
Hatzky, T.M. Tran, B.F. McMillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, Comp. Phys.
Commun. 177 (2007) 409] in order to reduce the memory of the matrix associated with
the field equation. This scheme is verified with linear and nonlinear simulations of turbu-
lence. It is demonstrated that the straight-field-line angle is the coordinate that optimizes
the Fourier solver, that both linear and nonlinear turbulent states are unaffected by the
parallel filtering, and that the kk spectrum is independent of plasma size at fixed normal-
ized poloidal wave number.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

It is now commonly accepted that plasma turbulence is responsible for the anomalous transport observed in Tokamaks [1].
The best numerical tools to study this issue are gyrokinetic codes, which consistently solve the Vlasov–Maxwell system [2].
The gyrokinetic theory assumes that the typical frequency of micro-instabilities is much smaller than the cyclotron frequency,
thus reducing the number of dimensions from 6 to 5. However, when deriving gyrokinetic equations (see for e.g. [3]), other
small parameters are introduced: this is called the gyrokinetic ordering. In particular, it is assumed that the parallel wave-
number kk is small (kkqs � Oðq�Þ; q� ¼ qs=a � 10�2 � 10�3, where qs is the ion sound gyroradius and a is the minor radius
of the Tokamak) whereas the perpendicular wavenumber can be large (k?qs � Oð1Þ). This assumption is based on the theo-
retical argument that small parallel wavelengths are Landau damped and has been observed experimentally [4]. This strong
anisotropy of plasma turbulence is the starting point of the so-called flux-tube codes [5], which solve the turbulence on a
field-aligned domain. Field-aligned coordinates allow a huge reduction of computational requirements, but may unfortu-
nately be inconvenient once used in a global code due to the magnetic shear: non-rational field lines do not close on them-
selves and special care must be employed to ensure the poloidal periodicity of the perturbations. Several techniques exist to
avoid this problem. In [6], the shifting-metric procedure is applied to have a locally orthogonal coordinate system at each
poloidal plane. Another useful technique is to use quasi-ballooning coordinates [7], where the parallel coordinate is not
exactly aligned to give straightforward boundary conditions in the poloidal and toroidal directions. This technique is used
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by several global gyrokinetic codes [8–10]. Quasi-ballooning coordinates result in an improved scaling of CPU time (/ (q⁄)�2)
compared to the (q⁄)�3 scaling with standard unaligned coordinates, due to the low resolution needed in the parallel direc-
tion. These coordinates act as a natural filter for unwanted high frequencies and allow larger time steps. However, imple-
menting a field-aligned solver is rather complicated due to non-rectangular grids and the treatment of the magnetic axis
is generally avoided. Due to magnetic shear, the grid is distorted which may result in poor resolution for radial derivatives.
This can be resolved by using an unstructured grid [34]. Unfortunately, the field equation is in that case solved with an iter-
ative solver whose convergence is not guaranteed and depends on the physical problem. For these reasons, many of the glo-
bal gyrokinetic codes [23,11–13] still solve the field equation on the poloidal plane with direct solvers. The GT3D code [23]
uses a ballooning phase factor to extract analytically the kk = 0 structure at a given magnetic surface: the grid resolution of
the field equation can be strongly reduced. However, when solving the field equation on the poloidal plane, the discretized
spectrum may contain modes with kkqs� q⁄ that are unphysical. Indeed, Particle-In-Cell (PIC) simulations may be polluted
by high parallel components generated by inherent statistical noise [12]. This has been resolved by applying a Fourier filter
specifically designed to remove high kkqs modes on the perturbed density [12]. This scheme has been recently improved by
applying the same filtering procedure to the potential [14] and results in massive computational savings in global Particle-
In-Cell (PIC) codes: memory is decreased by two orders of magnitude, the number of Fourier modes is decreased by one order
of magnitude and the number of particles required for a given accuracy is decreased by the same factor as the number of
particle per Fourier modes dictates the noise level [15]. It means that in PIC codes, parallel filtering cannot be dissociated
from the number of markers. On the other hand, Eulerian codes are free from such noise, and influences of the filtering
can be clearly estimated by comparing filtered and non-filtered simulations at a fixed number of grid points. Therefore, this
work presents the implementation of the Fourier filtering technique in the Eulerian code GT5D [11] and in the PIC code ORB5
[12].

The rest of this paper is organized as follows. Section 2 briefly presents both codes, the implementation of the Fourier
solver [14], and further focuses on the choice of the poloidal angle. The solver is verified with linear and nonlinear simula-
tions in Section 3. Then, turbulent spectra are studied in Section 4, and conclusions are given in Section 5.

2. Implementation of the Fourier solver

2.1. The GT5D code

The detailed implementation of the GT5D code can be found in Refs. [11,16]. It is briefly summarized for completeness.
GT5D is a five-dimensional full-f Vlasov code that solves a gyrokinetic equation [17] in Tokamaks:
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where f(R,vk,l, t) is the ion guiding-center distribution function, R is the guiding-center position, vk is the velocity parallel to
the magnetic field, l is the magnetic moment and J is the phase-space Jacobian. The nonlinear equations of motion ð _R; _vkÞ
are obtained from a Hamiltonian approach:
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where B = Bb is the magnetic field, B� ¼ Bþ Bvk=Xir� b;B�k ¼ b � B�;Xi ¼ qiB=ðmicÞ is the cyclotron frequency and h�ia = 1/
(2p)

H
�da is the gyro-averaging operator where a is the gyro-phase angle. The equations of motion are obtained through
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The collision operator C(f) is a linearized, drift-kinetic Fokker–Planck operator [18] C(f) 	 CT(d f) + CF(f), where CT(df) is the
test-particle operator and CF(f) is the field-particle operator. In particular, the field-particle operator is constructed numer-
ically in order to conserve density, parallel momentum and energy up to machine precision [19]. Finite Larmor Radius (FLR)
effects are neglected.

The source operator is Ssrc ¼ AsrcðRÞs�1
srcðfM1 � fM2Þ, where Asrc is a deposition profile, fM1 and fM2 are (shifted) Maxwellian

distributions and ssrc is a time constant. ssrc is set by imposing zero particle and momentum input, but a fixed power input Pin:
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