
Using piecewise polynomials for faster potential function evaluation

Pedro Gonnet *

Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

a r t i c l e i n f o

Article history:
Received 19 January 2009
Received in revised form 23 September
2009
Accepted 23 September 2009
Available online 2 October 2009

MSC:
65D05
65D07
65D10
65D20
65Y99

PACS:
02.30.Mv
02.60.Ed
02.60.Gf
02.70.Ns
31.15.xv
83.10.Rs

Keywords:
Molecular dynamics
Potential function
Piecewise polynomial interpolation
Horner scheme
Chebyshev polynomials

a b s t r a c t

In many molecular dynamics simulation software packages and hardware implementa-
tions, piecewise polynomials are used to represent and compute pairwise potential func-
tions efficiently. In this paper, we present three modifications applicable to most
interpolations to increase their accuracy. The increased accuracy reduces the amount of
data that needs to be stored for each interaction potential, making such interpolations
more suitable for architectures with limited memory and/or cache or hardware
implementations.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In most molecular dynamics or Monte-Carlo simulations, the most expensive part of each time step is the evaluation of
the non-bonded pairwise interactions [1–3]. Given a pair of particles pi and pj of the species A and B respectively, the inter-
action energy

eij ¼ vABðrijÞ

is computed from the interaction potential vAB specific to the particle species A and B and the inter-particle distance rij. The
resulting interaction force on the particles pi and pj is the gradient of the potential with respect to the particle coordinates

0021-9991/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2009.09.028

* Tel.: +41 446324552.
E-mail address: gonnetp@inf.ethz.ch.

Journal of Computational Physics 229 (2010) 313–324

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2009.09.028
mailto:gonnetp@inf.ethz.ch
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

Algorithm 1. Naive interaction of two particles pi and pj of species A and B respectively

1: rij xi � xj (compute the inter-particle vector)
2: rij krijk2 (compute the inter-particle distance)
3: f ij 0; eij 0 (initialize the force and energy)
4: if AB interact with a Lennard–Jones 12-6 potential then

5: eij eij þ 4eAB
rAB
rij

� �12
� rAB

rij

� �6
� �

6: fij fij þ rij
24eAB
r2

AB
�2 rAB

rij

� �14
þ ðrAB

rij
Þ8

� �
7: else if AB interact with a Morse potential then

8: eij eij þ DAB 1� exp �
ffi
kAB=2DAB

p
ðrij � rABÞ

� �h i2
þ eAB

9: fij fij þ
rij

rij

@
@rij

DAB 1� exp �
ffi
kAB=2DAB

p
ðrij � rABÞ

� �h i2

10: else if AB interact with a . . . potential then
11: eij eij þ . . .

12: fij f ij þ . . .

13: end if
14: if AB interact with a Coulomb potential then
15: eij eij þ q1q2

rij

16: fij f ij þ rij
q1q2

r3
ij

17: else if AB interact with an Ewald potential then
18: eij eij þ q1q2

rij
erfcðjrijÞ

19: fij f ij � rij
q1q2

r3
ij

erfcðjrijÞ �
2jrijffiffiffi

p
p expð�j2r2

ijÞ
h i

20: else if AB interact with a . . . potential then
21: eij eij þ . . .

22: fij f ij þ . . .

23: end if

f ij ¼ �rxi
vABðrijÞ ¼ rxj

vABðrijÞ:

The computation of the pairwise energy and force can be implemented naively as shown in Algorithm 1. This naive com-
putation has some obvious drawbacks:

(i) the relatively expensive evaluation of arithmetic operations such as
ffiffi�p or ð�Þ�1, e.g. when computing the inter-particle

distance rij or within the potentials themselves,
(ii) the relatively expensive evaluation of transcendental functions such as erfc(�) or exp(�) in the computation of the more

complicated potentials,
(iii) the cascading conditional statements (if-then-else statements) can cause stalls on processors with long instruction

pipelines or no branch prediction1 and make exploiting SIMD parallelism more difficult,
(iv) the size of the interaction computation can cause problems on computers with small instruction caches or on hard-

ware implementations where die surface and complexity are critical.

Problem (iii) can, in some cases, be avoided by implementing a separate interaction loop for each interaction type. This
would, however, require the list of interacting particle pairs to be traversed more than once. This inefficiency can easily offset
whatever advantage was obtained by avoiding conditional branches in the first place.

It is for these and other2 reasons that several authors have opted to compute not the exact potentials, as is done in Algorithm 1,
but to compute, store and evaluate an approximation of the potential function:

gABðrijÞ � vABðrijÞ

The approximation gABðrijÞ is usually a function of r2
ij to avoid evaluating the

ffiffi�p to compute rij:

gABðr2
ijÞ � vABðrijÞ:

The approximated potential is then usually represented as a set of n piece-wise polynomials between a set of nodes
xi; i ¼ 0 . . . n:

1 IBM’s Cell Broadband Engine [4], for example, has no dynamic branch prediction capabilities, incurring a penalty of 18–19 cycles for each mis-predicted
branch.

2 GROMACS, for example, uses an interpolated potential only for tabulated user-supplied potentials.

314 P. Gonnet / Journal of Computational Physics 229 (2010) 313–324

Download English Version:

https://daneshyari.com/en/article/520461

Download Persian Version:

https://daneshyari.com/article/520461

Daneshyari.com

https://daneshyari.com/en/article/520461
https://daneshyari.com/article/520461
https://daneshyari.com

