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a b s t r a c t

The discretization of Partial Differential Equations often leads to the need of solving large
symmetric linear systems. In the case of the Navier–Stokes equations for incompressible
flows, solving the elliptic pressure Poisson equation can represent the most important part
of the computational time required for the massively parallel simulation of the flow. The
need for efficiency that this issue induces is completed with a need for stability, in partic-
ular when dealing with unstructured meshes. Here, a stable and efficient variant of the
Deflated Preconditioned Conjugate Gradient (DPCG) solver is first presented. This two-level
method uses an arbitrary coarse grid to reduce the computational cost of the solving. How-
ever, in the massively parallel implementation of this technique for very large linear sys-
tems, the coarse grids generated can count up to millions of cells, which makes direct
solvings on the coarse level impossible. The solving on the coarse grid, performed with a
Preconditioned Conjugate Gradient (PCG) solver for this reason, may involve a large num-
ber of communications, which reduces dramatically the performances on massively paral-
lel machines. To this effect, two methods developed in order to reduce the number of
iterations on the coarse level are introduced, that is the creation of improved initial guesses
and the adaptation of the convergence criterion. The design of these methods make them
easy to implement in any already existing DPCG solver. The structural requirements for an
efficient massively parallel unstructured solver and the implementation of this solver are
described. The novel DPCG method is assessed for applications involving turbulence, heat
transfers and two-phase flows, with grids up to 17.8 billion elements. Numerical results
show a two- to 12-fold reduction of the number of iterations on the coarse level, which
implies a reduction of the computational time of the Poisson solver up to 71% and a global
reduction of the proportion of communication times up to 53%. As a result, the weak scal-
ing of the LES solver is shown to be clearly improved for massively parallel uses.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. State-of-the-art and motivation

Hestenes and Stiefel published in 1952 an article considered a seminal reference on the CG method [1], that has become a
standard method for solving symmetric linear systems, especially those arising from physical problems. The idea of precon-
ditioning this method dates back to the late Fifties, that is very few years after its creation, with for instance the work of
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Engell et al. [2], but the deflation technique came up three decades later, in 1987, thanks to Nicolaides [3]. This method has
since been developed and frequently applied, among others, to linear systems arising from the discretization of Navier–
Stokes equations: see for instance [4] about the creation of a Deflated CG method; Frank and Vuik [5] and Vermolen et al.
[6] about the domain-decomposition deflation method; Aubry et al. [7] and Nabben and Vuik [8] for applications to physical
problems. Several comparisons have been made between solvers [9,10], from which it appears that the DPCG is among the
most stable and efficient numerical methods for symmetric systems; moreover, its easy implementation for massively par-
allel solving on unstructured meshes is a considerable asset. Nevertheless, several stability issues may occur when the meth-
od is used for the simulation of fluid flows in complex geometries. These issues may be of particular importance when
dealing with Poisson equations in two-phase flows, that feature variable coefficient matrices with strong variations in its
diagonal.

In an article written in 2009 by Tang et al. [11], the A-DEF2 variant of the Deflated CG is created that is proved fast and ro-
bust, even when compared to Domain Decomposition and multigrid methods, which is why this method is studied here. Some
improvements were still to be used: as a matter of fact, reducing the high number of iterations required on the coarse level can
become very important, as these iterations will add irreducible communication times to the overall time spent in the solver.

Two novel methods are introduced here, one of them consisting in the computation of improved initial guesses, the other
one being an adaptation of the convergence criterion on the coarse grid at every iteration of the solver on the fine grid. For
assessment purposes, they have been implemented in the A-DEF2 solver used for the pressure Poisson equation in an
unstructured LES solver for incompressible flows. The novel solver created thereby has been tested for different settings;
it has been chosen to focus here on real turbulent flow configurations.

This paper is organized as follows. After a quick introduction on the Deflated PCG method and its variant A-DEF2, the cre-
ation of initial guesses for the successive systems on the coarse grid based on the former computed solutions is discussed in
Section 2, and Section 3 addresses the possibility of adjusting the convergence criterion on the coarse grid. Then, Section 4
presents the massively parallel implementation of these techniques, thanks to which the numerical results shown in Sec-
tion 5 have been obtained on grids up to billions of cells. Finally, Section 6 concludes this article by summing up the devel-
oped methods and the resulting gains on computational times.

1.2. Deflation of CG: the A-DEF2 algorithm

In this paper, the creation of the CG and PCG algorithms will not be detailed, as the reader may refer to [12,13] for details.
Numerous variants of preconditioned, deflated and balancing algorithms have been introduced and compared by Tang

et al. in [11], built thanks to strict combinations of the preconditioners corresponding to each method. The A-DEF2 variant
of the DPCG, a novel combination of the deflation and preconditioning techniques, has been chosen here due to its stability
and performance, shown in the aforementioned article. It is applied here by combining a standard geometrical deflation with
non-overlapping projection vectors, as introduced by Vermolen et al. in [6], and a preconditioning by the inverse of the diag-
onal. These choices are practical, as they reduce the computational time required for initializing the solver. The A-DEF2 algo-
rithm being implemented is described by Algorithm 1, with W the deflation matrix and M ¼ diagðAÞ. In what follows, the
right-hand side of the solver on the coarse grid WTðAM�1 � IÞri is called bC

i .

Algorithm 1. The A-DEF2 algorithm, to solve Ax ¼ b using the preconditioner M�1 and the deflation matrix W

Require: A; b;M�1;W

Â WT AW

Solve Âd�1 ¼WT b
x0 ¼Wd�1

r0 ¼ b� Ax0

Solve Âd0 ¼WTðAM�1 � IÞr0

w0 ¼ M�1r0 �Wd0

p0 ¼ w0

for k ¼ 0;1; . . . until required convergence do

akþ1 ¼
rT

k wk

pT
k

Apk

xkþ1 ¼ xk þ akþ1pk

rkþ1 ¼ rk � akþ1Apk

Solve Âdkþ1 ¼WTðAM�1 � IÞrkþ1

wkþ1 ¼ M�1rkþ1 �Wdkþ1

bkþ1 ¼
rT

kþ1wkþ1

rT
k

wk

pkþ1 ¼ wkþ1 þ bkþ1pk

end for
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