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comes from the fact there are applications with very complicated geometries (for example,
IC packages) where a conformal mesh may be very difficult to obtain. Therefore, the ability
to handle non-conformal meshes really comes in handy. In the proposed approach, we first
decompose the computational domain into non-overlapping subdomains. Afterward, each
sub-domain is meshed independently resulting in non-conformal domain interfaces, but
simultaneously providing great flexibility in the meshing process. The non-conformal tri-
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MPI parallelization angulations at sub-domain interfaces can be naturally supported within the IPDGTD frame-
Local time-stepping work. Moreover, a MPI parallelization together with a local time-stepping strategy is
IC packages applied to significantly increase the efficiency of the method. Furthermore, a general bal-

ancing strategy is described. Through a practical example with multi-scale features, it is
shown that the proposed balancing strategy leads to better use of the available computa-
tional resources and reduces substantially the total simulation time. Finally, numerical
results are included to validate the accuracy and demonstrate the flexibilities of the pro-
posed non-conformal IPDGTD.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The complexity of modern electromagnetic applications demands for sophisticated and efficient numerical methods. It
can be argued that these requirements are even more critical when transient simulations are coveted. Moreover, recent
hardware architectures such as multi-core CPUs and/or Graphics Processor Units (GPUs) are widely available for computa-
tion. As a consequence, numerical methodologies that exhibit high parallelism and can be mapped effectively to the latest
hardware architectures are also highly desirable.

Discontinuous Galerkin (DG) finite element methods are a good candidate for time-domain simulations. DG methods can
support various types and shapes of elements, non-conformal meshes and non-uniform orders of approximation. Addition-

ally, a dispersion error of O((hk)z‘M) [1,2] can be shown (k is the exact wavenumber), where p is the polynomial approx-

imation order and high orders of approximation can be easily realized. Moreover, since the tangential continuity of the fields
and boundary conditions can be enforced in the weak sense, significant freedom in the choice of basis functions is available.
In this way, a great amount of flexibility is available and this is a major strength of DG methods. Furthermore, the resulting
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mass matrix is a block diagonal matrix with the block size equal to the number of degrees of freedom in the element. There-
fore, the method can lead to a fully explicit time-marching scheme for the solution in time. Finally, information exchange is
required only between neighboring elements regardless of approximation order and shape, which then leads to high effi-
ciency in parallelization.

In electromagnetism, DG methods were recently applied for the solution of the time dependent Maxwell’s equations [3-
7]. In [3], Heasthaven and Warburton developed a low storage, high-order Runge-Kutta DGTD method based on upwind
fluxes. The authors showed that upwind fluxes, will result in optimal h-convergence rate O(hp“). Moreover, in [1,2] the
authors present a O (hl<)2p*32_ error estimate for the dispersion error, and a O( (hk)**?) for the dissipation error respectively,
again for an upwind flux DGTD. On the other hand, Fezoui et al. [4] formulated an enérgy conservative DGTD method based
on central fluxes and leap-frog discretization in time, but with sub-optimal h-convergence rate O(h?). Furthermore, Monts-
eny et al. [5] proposed a DGTD method for hexahedra with the option of either central or upwind flux. The authors used
Gauss-Lobatto quadrature formulas to obtain a method with low cost in memory and CPU time. They concluded on a
O(K"™") convergence rate for the central flux option and a O(h*~"/?) convergence rate for the upwind flux case. Finally, in Fahs
et al. [8] the authors studied a high order DGTD based on central fluxes and non-conformal meshes and results were shown
for two dimensional problems.

This article is organized as follows. In Section 3, we describe the IPDGTD formulation and discuss the corresponding stabil-
ity condition. Next, in Section 4, we present the current approach on the support for non-conformal meshes. We begin by par-
titioning the computational domain into non-overlapping sub-domains. Subsequently, each of the sub-domains is meshed
independently resulting in non-conformal domain interfaces but simultaneously providing great flexibility in the meshing
process. In this way a final non-conformal mesh can be obtained for computation. In Section 5, a MPI parallelization together
with a local time-stepping (LTS) is proposed to significantly increase the efficiency of the IPDGTD method. The proposed MPI
design follows the one presented in [9]. However, an additional and general balancing strategy is included herein, which pro-
vides a more efficient usage of the available computational resources and improves substantially the solution time. To the best
of our knowledge, a parallel and non-conformal (both geometrically and mesh-wise) DGTD method for unstructured meshes in
three dimensions has not been reported yet in the literature and this is the main contribution of this paper. Finally, some inter-
esting numerical examples demonstrate the capabilities of the proposed approach to the analysis of engineering applications.

2. Original initial value problem (IVP)

We consider the time-dependent Maxwell’s equations in three dimensions. The electric permittivity €(r) and the mag-
netic permeability p(r) are positive and varying in space.

VXE:—M% in Qx[0,7T] (1)
va:eg—f in Qx[0,T] 2)
E(r,t =0)=Eo, H(r,t=0)=H, (3)

The above equations are solved in a bounded domain Q c R®. Moreover, we apply boundary conditions that are:
nxE=0 on FPEC
nxH=0 on T'pyc

and/or some kind of absorbing boundary condition on the boundary 0Q of the computational domain, applied for the trun-
cation of the computational domain.

3. IPDGTD formulation
In this section we briefly outline our DGTD method since a more detailed description of the formulation can be found in [6].
3.1. Trace operators and notations

Let Q be the computational domain of interest and 7/, the discretization of Q into polyhedral elements, namely, 7, = {K;}.
We denote by }‘L the set of all interior faces, 0K; N 9Kj, with K; and K; be two adjacent elements of 7. Moreover, by }‘ﬁ we
delineate the set of all boundary faces 9K; N 9Q, such that 7, = F} U F£. Next, we introduce the notations for the trace oper-
ators employed in our analysis. Define the tangential trace and projection (“components trace”) operators, y,(-) and 7.(-)
respectively, as y,(u;) = fi; x i, and 7o (u;) = n; x (0 x ﬁi)\a,(i where 1 is the boundary normal pointing out of the element
K;. Additionally, we have also adopted the following notations:

{u} = (7 (W) + 7 (w;) ) /2
on Fi{ [ul, = 7.(w) + 7, (w) (4)
[u]n = n‘f(ui) — Tt (uj)
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