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a b s t r a c t

The multiscale control-volume methods for solving problems involving flow in porous
media have gained much interest during the last decade. Recasting these methods in an
algebraic framework allows one to consider them as preconditioners for iterative solvers.
Despite intense research on the 2D formulation, few results have been shown for 3D, where
indeed the performance of multiscale methods deteriorates. The interpretation of multi-
scale methods as vertex based domain decomposition methods, which are non-scalable
for 3D domain decomposition problems, allows us to understand this loss of performance.

We propose a generalized framework based on auxiliary variables on the coarse scale.
These are enrichments of the coarse scale, which can be selected to improve the interpo-
lation onto the fine scale. Where the existing coarse scale basis functions are designed to
capture local sub-scale heterogeneities, the auxiliary variables are aimed at better captur-
ing non-local effects resulting from non-linear behavior of the pressure field. The auxiliary
coarse nodes fits into the framework of mass-conservative domain-decomposition (MCDD)
preconditioners, allowing us to construct, as special cases, both the traditional (vertex
based) multiscale methods as well as their wire basket generalization.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Geological porous media are typically characterized as heterogeneous at virtually every scale. This reflects the process by
which geological formations are created, where natural sedimentation processes spanning kilometers horizontally and mil-
lennia in time lead to composite materials that are intrinsically complex in structure. Compounding the difficulties intro-
duced by multiscale geological parameterizations are the strongly non-linear equations that describe multi-phase flow in
porous media. These equations lead to challenges that are manifested in discontinuous solutions as well as both gravitational
and viscous instabilities. Such phenomena are frequently best understood as multiscale in nature. As a consequence of the
complexity in modeling multi-flow in geological porous media, virtually every text-book on the subject address issues of
scale. We refer to [1] for classical examples.

Two main avenues are typically followed when confronting multiscale phenomena. The most classical approach, multi-
scale modeling, is to manipulate equations defined at a finest, verified scale, and attempt to derive effective equations valid
on coarser scales. These equations are typically stated for derived variables. These derived variables broadly fall into three
categories: conserved (extensive) quantities, auxiliary (intensive) state variables, and problem specific variables. This final
category of variables may be unique to the problem, or to the coarser scales, and can be interpreted to represent emerging
properties of the system. In some cases these emerging properties are parameterizations of what would otherwise be seen as
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hysteretic, or non-unique, behavior. In the context of multi-phase flow in porous media, component masses are conserved at
all scales, pressure is an intensive state variable at all scales, and finally various parameterizations of hysteresis or dynamical
behavior are introduced to make the models appropriate in practice [2]. This classical approach has seen several formaliza-
tions in recent years, among the most instructive of which is the Heterogeneous Multiscale Method [3].

A more recent approach to handling multiscale characteristics is through adaption of the numerical methods themselves.
Classically introduced as generalized finite elements by Babuska et al. [4], it was first made into a useful concept through the
residual-free bubble methods [5], where multiscale features of the solution can be handled. Later, this concept was also ap-
plied to multiscale coefficients, in what is termed multiscale finite element and multiscale finite volume methods (see [6] for
an introduction). While multiscale numerical methods have shown good properties on academic problems, they often fail to
live up to their promise on real problems [7]. By exploiting the link between multiscale numerical methods and domain
decomposition (DD), multiscale control volume methods can be framed in an iterative setting which greatly increases the
potential for robust implementations [8]. However, an improved multiscale representation without iterations is still the ulti-
mate goal.

In this paper, we propose to enhance the common understanding of multiscale numerical discretizations through an anal-
ogy to multiscale modeling. In particular, as multiscale control volume methods inherently discretize conserved quantities, it
is natural to ask if the discrete approximation, like its modeling counterpart, can be enhanced through introducing problem-
specific additional variables. We term these additional variables auxiliary, and the remainder of the paper is devoted to
developing and verifying this concept. In particular we consider the issue of assigning boundary conditions to the local prob-
lems based on the state in the coarse variables. This poses challenges for multiscale numerical methods, especially in the
presence of long correlation pathways that render non-local dependence of the solution. The problem is difficult already
in two spatial dimensions, where the state in the coarse variables must be mapped onto a 1D boundary. Strategies proposed
to remedy the situation include oversampling [9,10], utilizing global information [10,11] and using specialized boundary
conditions [7,12]. The situation becomes worse in three spatial dimensions, since a mapping to a 2D boundary is needed.
In this paper, auxiliary coarse variables are used to address these challenges. By exploiting links between multiscale control
volume methods and domain decomposition, the auxiliary variables can easily be introduced in the linear solver. We con-
sider grids with relatively few primary coarse variables (corresponding to aggressive coarsening), and enhance the coarse
space by auxiliary variables. Thus the number of internal boundaries decreases, while there is enough degrees of freedom
in the coarse space to capture details in the solution. Our numerical experiments involve model problems as well as indus-
trial benchmark data. The results show that auxiliary coarse variables can improve the performance of the linear solver
considerably.

The rest of the paper is structured as follows: in Section 2, multiscale methods for three-dimensional problems are dis-
cussed and difficulties are pointed out. A multiscale linear solver is introduced in Section 3, and the extension to coarse
spaces is introduced in Section 4. Simulation results are presented in Section 5, and the paper is concluded in Section 6.

2. Challenges of 3D multiscale elliptic problems

In this study we consider the following elliptic problem for flow in three dimensional porous media,

�r � Kruð Þ ¼ q; ð1Þ

where K is the permeability of the medium, u is the potential and q represents the source terms of the system. The heter-
ogeneous structure of porous rocks is reflected in the permeability K, which can vary by several orders of magnitude on dif-
ferent scales. It is the variation of this parameter which represents the major challenge, and has been the main focus of the
multiscale methods for problems involving flow in porous media. Hou and Wu [13] showed that the sub-scale information of
the elliptic operator can be captured within a few coarse-scale basis functions, which increases the accuracy of the recovered
fine-scale solution. Several multiscale numerical methods have later been developed for the capturing of sub-scale informa-
tion into local basis-functions. We refer to [6] for an overview of these methods.

A special focus of this paper will be on problems involving long correlation lengths of the parameter K, e.g. fractures,
faults and channels which occupy several coarse-scale grid blocks. The discretization of such problems are particularly dif-
ficult to upscale, and local iterations are required to guarantee accurate solutions [14]. Due to the difficulties involved, the
primary focus of previous works has been the 2D problem. In the remainder of this section we will briefly discuss some of the
existing challenges of multiscale numerical methods, and highlight some of the main challenges of extending these methods
to 3D simulations.

2.1. Multiscale numerics

In general porous media there are rarely only two or a couple of distinct scales, but rather a continuum of physical scales
which needs to be taken into account. However, for practical purposes we need to define a finest (geological) scale for the
discretization of our problem. Usually the fine-scale discretization leads to a large coupled problem which is extensive and
often too computationally expensive to solve. For multiscale methods, one or a couple of coarse scales are added to speed up
the calculation of a fine-scale conservative solution.
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