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a b s t r a c t

We present a simple technique for avoiding physically spurious eigenmodes that often
occur in the solution of hydrodynamic stability problems by the Chebyshev collocation
method. The method is demonstrated on the solution of the Orr–Sommerfeld equation
for plane Poiseuille flow. Following the standard approach, the original fourth-order differ-
ential equation is factorised into two second-order equations using a vorticity-type auxil-
iary variable with unknown boundary values which are then eliminated by a capacitance
matrix approach. However the elimination is constrained by the conservation of the struc-
ture of matrix eigenvalue problem, it can be done in two basically different ways. A
straightforward application of the method results in a couple of physically spurious eigen-
values which are either huge or close to zero depending on the way the vorticity boundary
conditions are eliminated. The zero eigenvalues can be shifted to any prescribed value and
thus removed by a slight modification of the second approach.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Spectral methods are known to achieve exponential convergence rate [3], which makes them particularly useful for solv-
ing numerically demanding differential eigenvalue problems which arise in hydrodynamic stability analysis [11]. Unfortu-
nately, besides providing accurate and efficient solutions for a certain number of leading eigenvalues, spectral methods often
produce physically spurious unstable modes, which cannot be removed by increasing the numerical resolution [7]. For de-
tailed discussion of these modes we refer to Boyd [2]. Such physically spurious eigenvalues can appear in all types of spectral
methods including Galerkin [15], tau [4] and collocation approximations [3], unless some kind of ad hoc approach is applied
to avoid them. In the Galerkin method, spurious eigenvalues can be removed by using the basis functions also as the test
functions instead of separate Chebyshev polynomials [16]. A number of approaches avoiding spurious eigenvalues have also
been found for the tau method [6,10,9]. The same can be achieved also for the collocation (or pseudospectral) method by
using two distinct interpolating polynomials [8]. Following the approach of McFadden et al. [10] for the tau method, Huang
and Sloan [8] use a Lagrange interpolating polynomial for second-order terms which is by two orders lower than the Hermite
interpolant used for other terms. The choice of the latter polynomial depends on the particular combination of the boundary
conditions for the problem to be solved [14, p. 493].

The objective of this paper is to present a simple method avoiding spurious eigenmodes in the Chebyshev collocations
method which uses only the Lagrange interpolating polynomial applicable to general boundary conditions. Our approach

0021-9991/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.12.012

⇑ Corresponding author. Tel.: +44 7877399263.
E-mail address: j.priede@coventry.ac.uk (J. Priede).

Journal of Computational Physics 238 (2013) 210–216

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2012.12.012&domain=pdf
http://dx.doi.org/10.1016/j.jcp.2012.12.012
mailto:j.priede@coventry.ac.uk
http://dx.doi.org/10.1016/j.jcp.2012.12.012
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


is based on the capacitance matrix technique which is used to eliminate fictitious boundary conditions for a vorticity-type
auxiliary variable. The elimination can be performed in two basically different ways which respectively produce a pair of
infinite and zero spurious eigenvalues. The latter can be shifted to any prescribed value by a simple modification of the sec-
ond approach. The main advantage of our method is not only its simplicity but also applicability to more general problems
with complicated boundary conditions.

The paper is organised as follows. In the next section we introduce the Orr–Sommerfeld problem for plane Poiseuille flow,
which is a standard test case for this type of method. Section 3 presents the basics of the Chebyshev collocation method that
we use. The elimination of the vorticity boundary conditions, which constitutes the basis of our method, is performed in Sec-
tion 4. Section 5 contains numerical results for the Orr–Sommerfeld problem of plane Poiseuille flow. The paper is concluded
by a summary of results in Section 6.

2. Hydrodynamic stability problem

The method will be developed by considering the standard hydrodynamic stability problem of plane Poiseuille flow of an
incompressible liquid with density q and kinematic viscosity m driven by a constant pressure gradient $p0 ¼ �exP0 in the gap
between two parallel walls located z ¼ �h in the Cartesian system of coordinates with the x and z axes directed streamwise
and transverse to the walls, respectively. The velocity distribution vðr; tÞ is governed by the Navier–Stokes equation

@tv þ ðv � $Þv ¼ �q�1$pþ m$2v ð1Þ

and subject to the incompressibility constraint $ � v ¼ 0. Subsequently, all variables are non-dimensionalised by using h and
h2
=m as the length and time scales, respectively. Note that instead of the commonly used maximum flow velocity, we employ

the viscous diffusion speed m=h as the characteristic velocity. This non-standard choice will allow us to test our numerical
method against the analytical eigenvalue solution for a quiescent liquid.

The problem above admits a rectilinear base flow v0ðzÞ ¼ Re�uðzÞex, where �uðzÞ ¼ 1� z2 is the parabolic velocity profile
and Re ¼ U0h=m is the Reynolds number defined in terms of the maximum flow velocity U0 ¼ P0h2

=ð2qmÞ. Stability of this
base flow is analysed with respect to small-amplitude perturbations v1ðr; tÞ by searching the velocity as v ¼ v0 þ v1. Since
the base flow is invariant in both t and x ¼ ðx; yÞ, perturbation can be sought as a Fourier mode

v1ðr; tÞ ¼ v̂ðzÞektþik�x þ c:c:; ð2Þ

defined by a complex amplitude distribution v̂ðzÞ, temporal growth rate k and the wave vector k ¼ ða; bÞ. The incompressib-
lity constraint, which takes the form D � v̂ ¼ 0, where D � ez

d
dzþ ik is a spectral counterpart of the nabla operator, is satisfied

by expressing the component of the velocity perturbation in the direction of the wave vector as ûk ¼ ek � v̂ ¼ ik�1ŵ0, where
ek ¼ k=k and k ¼ jkj. Taking the curl of the linearised counterpart of Eq. (1) to eliminate the pressure gradient and then pro-
jecting it onto ez � ek, after some transformations we obtain the Orr–Sommerfeld equation

kD2ŵ ¼ D4ŵþ iaReð�u00 � �uD2Þŵ; ð3Þ

which is written in a non-standard form corresponding to our choice of the characteristic velocity. Note that the Reynolds
number appears in this equation as a factor at the convective term rather than its reciprocal at the viscous term as in the
standard form. As a result, the growth rate k differs by a factor Re from its standard definition. The same difference, in prin-
ciple, applies also to the velocity perturbation amplitude which, however, is not important as long as only the linear stability
is concerned. In this form, Eq. (3) admits a regular analytical solution at Re ¼ 0, which is used as a benchmark for the numer-
ical solution in Section 5.

The no-slip and impermeability boundary conditions require

ŵ ¼ ŵ0 ¼ 0 at z ¼ �1: ð4Þ

Because three control parameters Re and ða; bÞ appear in Eq. (3) as only two combinations aRe and a2 þ b2, solutions for ob-
lique modes with b – 0 are equivalent to the transverse ones with b ¼ 0 and a larger a and, thus, a smaller Re which keep
both parameter combinations constant [5]. Therefore, it is sufficient to consider only the transverse perturbations ðk ¼ aÞ.

The first step in avoiding spurious eigenvalues in the discretizied version of Eq. (3) to be derived in the following section is
to represent Eq. (3) as a system of two second-order equations [7]

kf̂ ¼ D2f̂þ iaReð�u00ŵ� �uf̂Þ; ð5Þ

f̂ ¼ D2ŵ; ð6Þ

where f̂ is a vorticity-type auxiliary variable which has no explicit boundary conditions.

3. Chebyshev collocation method

The problem is solved numerically using a collocation method with N þ 1 Chebyshev–Gauss–Lobatto nodes

zi ¼ cos ip=Nð Þ; i ¼ 0; � � � ;N: ð7Þ
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