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Abstract

We present a new limiter for the PPM method of Colella and Woodward [P. Colella, P.R. Woodward, The Piecewise
Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics 54 (1984) 174–201] that pre-
serves accuracy at smooth extrema. It is based on constraining the interpolated values at extrema (and only at extrema)
using non-linear combinations of various difference approximations of the second derivatives. Otherwise, we use a stan-
dard geometric limiter to preserve monotonicity away from extrema. This leads to a method that has the same accuracy
for smooth initial data as the underlying PPM method without limiting, while providing sharp, non-oscillatory represen-
tations of discontinuities.
� 2008 Published by Elsevier Inc.
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1. Introduction

One of the great successes in numerical methods for hyperbolic conservation laws has been the use of non-
linear hybridization techniques, known as limiters, to maintain positivity and monotonicity in the presence of
discontinuities and underresolved gradients. As originally formulated [3,14,5], these methods have the prop-
erty that the truncation error is first-order accurate at all extrema, regardless of the accuracy of the underlying
high-order method. This problem has been known since these methods were first introduced, and there have
been a variety of methods proposed to deal with it. Typically, these have been based on the idea allowing the
representation of solution values outside the range defined by the cell averages [16], while still suppressing
oscillations at discontinuities and underresolved gradients. In particular, the methods proposed to solve the
problem to obtain uniform high-order accuracy for smooth solutions [6,8,7,13,2,10] typically have used quite
elaborate analytic and/or geometric constructions. In this note, we propose a particularly simple approach to
solving this problem for the PPM method [4]. It is based on changing the PPM limiter at extrema (and only at
extrema) using non-linear combinations of various difference approximations of the second derivatives. This
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leads to a method that has the same accuracy for smooth initial data as the underlying PPM method without
limiting, while providing sharp, non-oscillatory representations of discontinuities.

2. Scalar advection

We will consider the linear advection equation in one space dimension
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We assume that we know at time step n the averages of a over finite-volume cells of length h
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The PPM method in [4] for computing hainþ1
j is a conservative finite difference method
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is the average of a parabolic interpolant over the interval swept out by the characteristics crossing
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The parabolic interpolant aI
jðxÞ; x 2 ½ðj� 1=2Þh; ðjþ 1=2Þh� is uniquely determined by the cell average hainj and

the left and right extrapolated edge values aj;� ¼ aI
jðj� 1=2Þh.
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For this choice of interpolant, the averages (5) and (6) are given by the following formulas:
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It is easy to check that

rIj;þðrÞ þ ð1� rÞIj;�ð1� rÞ ¼ hainj ; 0 6 r 6 1 ð11Þ

To complete the description of the algorithm, we must specify how the parabolic interpolant is computed, or,
equivalently, how the aj,± are computed. In [4], this was done in two steps.

2.1. Interpolating face values

We compute high-order accurate approximations to a at cell edges

an
jþ1

2
¼ a ðjþ 1

2
ÞDx; nDt

� �
þOðhpÞ; p P 3 ð12Þ

7070 P. Colella, M.D. Sekora / Journal of Computational Physics 227 (2008) 7069–7076



Download English Version:

https://daneshyari.com/en/article/520499

Download Persian Version:

https://daneshyari.com/article/520499

Daneshyari.com

https://daneshyari.com/en/article/520499
https://daneshyari.com/article/520499
https://daneshyari.com

