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Abstract

We present a new limiter for the PPM method of Colella and Woodward [P. Colella, P.R. Woodward, The Piecewise
Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics 54 (1984) 174-201] that pre-
serves accuracy at smooth extrema. It is based on constraining the interpolated values at extrema (and only at extrema)
using non-linear combinations of various difference approximations of the second derivatives. Otherwise, we use a stan-
dard geometric limiter to preserve monotonicity away from extrema. This leads to a method that has the same accuracy
for smooth initial data as the underlying PPM method without limiting, while providing sharp, non-oscillatory represen-
tations of discontinuities.
© 2008 Published by Elsevier Inc.
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1. Introduction

One of the great successes in numerical methods for hyperbolic conservation laws has been the use of non-
linear hybridization techniques, known as limiters, to maintain positivity and monotonicity in the presence of
discontinuities and underresolved gradients. As originally formulated [3,14,5], these methods have the prop-
erty that the truncation error is first-order accurate at all extrema, regardless of the accuracy of the underlying
high-order method. This problem has been known since these methods were first introduced, and there have
been a variety of methods proposed to deal with it. Typically, these have been based on the idea allowing the
representation of solution values outside the range defined by the cell averages [16], while still suppressing
oscillations at discontinuities and underresolved gradients. In particular, the methods proposed to solve the
problem to obtain uniform high-order accuracy for smooth solutions [6,8,7,13,2,10] typically have used quite
elaborate analytic and/or geometric constructions. In this note, we propose a particularly simple approach to
solving this problem for the PPM method [4]. It is based on changing the PPM limiter at extrema (and only at
extrema) using non-linear combinations of various difference approximations of the second derivatives. This
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leads to a method that has the same accuracy for smooth initial data as the underlying PPM method without
limiting, while providing sharp, non-oscillatory representations of discontinuities.

2. Scalar advection

We will consider the linear advection equation in one space dimension
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The PPM method in [4] for computing <a>;f+1 is a conservative finite difference method
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where o 4 i is the average of a parabolic interpolant over the interval swept out by the characteristics crossing
the cell face at (j+5h
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The parabolic interpolant a}(x),x € [(j — 1/2)h, (j + 1/2)h] is uniquely determined by the cell average (a); and
the left and right extrapolated edge values a;. = aj(j £ 1/2)h.
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For this choice of interpolant, the averages (5) and (6) are given by the following formulas:
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It is easy to check that
0S(0)+(1=0)7; (1 -0)={(a);, 0<o<]1 (11)

To complete the description of the algorithm, we must specify how the parabolic interpolant is computed, or,
equivalently, how the a;, are computed. In [4], this was done in two steps.

2.1. Interpolating face values

We compute high-order accurate approximations to « at cell edges
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