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Abstract

A high-order finite-volume algorithm is developed for the Fokker–Planck Operator (FPO) describing Coulomb colli-
sions in strongly magnetized plasmas. The algorithm uses a generic fourth-order reconstruction scheme on an unstructured
grid in the velocity space spanned by parallel velocity and magnetic moment. By analytically mapping between different
coordinates, it produces an accurate and density-conserving numerical FPO for an arbitrary choice of velocity space coor-
dinates. A linearized FPO in constants-of-motion coordinates is implemented as an example of the present algorithm com-
bined with a cut-cell merging procedure. Numerical tests include the thermalization of a test distribution with a
background Maxwellian at a different temperature, and the return to isotropy for a distribution initialized with a velocity
space loss-cone. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Trubni-
kov–Rosenbluth potentials.
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1. Introduction

The differential Fokker–Planck Operator (FPO) describes the particle collisions in a fully ionized plasma
through shielded electrostatic Coulomb fields. Such Coulomb collisions are important in many systems,
including laboratory plasma physics devices for basic studies, magnetic and inertial fusion, industrial material
processing, and astrophysics. In magnetized plasma, because of the gyro-motion of the charged particles
around magnetic field lines, the FPO is typically written in spherical coordinates spanned by ðv; h;/Þ, where
v is the particle speed, h is the pitch angle and / the gyro-angle. For strong magnetic fields, many physical
phenomena have characteristic time scales much longer than the gyro-period, and characteristic length scales
much larger than the gyro-radius. In such cases, a gyro-averaging procedure may be applied and the resulting
distribution function becomes independent of gyro-angle /. By further using a series expansion with Legendre
polynomials Lnðcos hÞ in the h direction, the evaluation of FPO is reduced to solving a series of one-dimen-
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sional equations of v only [1,2]. Following this approach, Chang and Cooper [3] developed a finite difference
scheme that conserves particle number density. This scheme was further extended by Epperlein [4] to conserve
particle energy. Khabibrakhmanov and Khazanov [5] have recently solved these equations using a spectral
collocation method.

The velocity coordinates ðv; hÞ, though convenient for evaluating the FPO, are not particularly suitable for
simulating spatially inhomogeneous plasmas where particle advection, including parallel streaming and per-
pendicular drifts, is important. To accurately compute the particle orbits, the velocity coordinates are often
determined by the particular choice of the spatial advection schemes. In such cases, the FPO needs to be eval-
uated in the same coordinates and its discretization becomes truly two-dimensional. Chacon et al. [6] proposed
a tensor formulation for two-dimensional FPO and studied the finite difference scheme in cylindrical coordi-
nates for improved energy conservation. Other algorithms dealing with non-isotropic, multi-dimensional
FPOs use Cartesian velocity coordinates directly [7,8]. Cartesian coordinates, however, are almost never used
directly for strongly magnetized plasmas owing to the usefulness of averaging over the rapid particle gyro-
motion to remove one dimension from the computation. Recent attempts to couple the FPO with the Vlasov
equation in different velocity coordinates have ignored the spatial dependence of the distribution function in
the collision operator [9,10].

The so-called constants-of-motion coordinates, e.g. the total energy E and the magnetic moment l, have
been used in gyrokinetic simulations of fusion plasma with both particle [11] and continuum [12] formulations.
For these simulations, it is critical that the passing and trapped particle orbits are accurately represented. The
choice of ðl;EÞ coordinates is advantageous because ðl;EÞ remain constant along particle orbits (in the absence
of collisions and time-varying fields), and the velocity coordinates ðl;EÞ are thus orthogonal to the spatial
coordinates. For instance, the collisionless Vlasov equation is particularly simple when written in ðl;EÞ coor-
dinates. To compute collisional effects accurately, the same constants-of-motion coordinates should be used in
the FPO as well. The approach of using direct interpolation of the collision operator between different velocity
coordinates has been found unsatisfactory, particularly with respect to the conservation properties. In this
paper, we present an algorithm for computing the FPO in constants-of-motion coordinates based on a generic
high-order finite volume scheme on unstructured grids, which is inherently particle-number-conserving.
Although focusing on the constants-of-motion coordinates in this paper, our goal is to develop a numerical
FPO that is accurate, conservative and easily applied to different coordinates systems.

The strategy is to first choose a convenient but fixed coordinate system, e.g. in this case ðvk; lÞ, and then
evaluate the FPO in these coordinates using a conservative, high-order finite volume scheme on a unstructured
mesh. Here vk is the velocity along the magnetic field. The finite volume discretization is inherently density
conserving, and an unstructured mesh decouples the choice of coordinates and the gridding strategy. In this
way, different velocity coordinates can be mapped directly onto the chosen ðvk; lÞ coordinates, with a regular
grid in the former typically becoming an irregular and unstructured grid in the latter. After the mapping, the
solution we obtain still maintains high-order accuracy and good conservation properties. In this sense, the
evaluation of the FPO is independent of the choice of velocity coordinates, and the constants-of-motion coor-
dinate set is but one such choice. For simplicity, the method is illustrated using a linearized FPO, where the
collision diffusion coefficients are known by assuming the background particle distribution to be Maxwellian.
For the nonlinear FPO, the diffusion coefficients need to be obtained first by solving Trubnikov–Rosenbluth
potentials [13], which is an important but rather independent problem and shall be dealt with separately. Once
the diffusion coefficients are known, the algorithm described here applies to the nonlinear FPO directly.

The remainder of the paper is organized as follows: the formulation of the FPO in ðvk; lÞ coordinates is
given in Section 2 both for nonlinear and linearized cases. The high-order finite volume scheme on a general
unstructured mesh is presented in Section 3. In Section 4, we describe the cut-cell method in ðl;EÞ space, and
the choice of stencils for finite volume reconstruction. The numerical tests are presented in Section 5, and the
concluding remarks are given in Section 6.

2. Fokker–Planck collision operator

Here the general Fokker–Planck collision operator is given in ðvk; lÞ coordinates, followed by the linearized
version about a fixed Maxwellian distribution function describing the background field particles.
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