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Abstract

This paper is devoted to comparing numerical schemes for a differential equation with convection and fourth-order dif-
fusion. Our model equation is u, + (> — u®), = —(u u,,),, which arises in the context of thin film flow. First we employ
implicit schemes and treat both convection and diffusion terms implicitly. Then the convection terms are treated with well-
known explicit schemes, namely Godunov, WENO and an upwind-type scheme, while the diffusion term is still treated
implicitly. The diffusion and convection schemes are combined using a fractional step-splitting method.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider numerical solutions to the following equation

2% +f(u)x = 7(u3uxxx)x; (11)
where the flux is given by
flu) =u? =, (1.2)

Eq. (1.1) describes the flow of a thin liquid film, where u(x, ) > 0 denotes the film thickness. The flux terms
represent surface shear and gravity, where the forces act in opposing directions, the diffusion term on the right
hand side represents surface tension. The surface shear term may arise due to temperature or concentration
gradients or to an external shear force (caused by wind for example). Derivations of Eq. (1.1) and related
equations may be found in the reviews [21,25]. For the specific case when thermocapillary effects produce
the surface shear, Eq. (1.1) is derived in [4,11], with a wind induced stress a derivation is given in [22,23].
Experimental results showing typical film shapes for thermocapillary flow up a vertical plate are presented
in [11]. The experiments show good agreement with numerical solutions for the small times that the
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experiments have been run [3]. However, it is the properties of the numerical solution that we are focussing on,
not the comparison with experiment.

The numerical solution of Egs. (1.1) and (1.2) is constrained by the diffusion term. An explicit scheme
requires a time-step At¢ of the order (Ax)4 Consequently in regions where high resolution is required, such
as at a moving front, a singularity or at blow-up, the computational time is prohibitive. Implicit methods
are therefore generally preferred. Recently these have been coupled with adaptive meshes to permit high accu-
racy in the regions of primary interest, see [2,12,27,33] for example. However, the first-order convection term is
not subject to the same constraint and there are many different methods to deal with nonlinear convection. In
the following work we focus primarily on a comparison between finite difference, Godunov, an adapted
upwind and WENO schemes applied to the convection term. We also investigate the effect of applying fully
implicit and Crank—Nicolson schemes. Even if it is possible to solve the full equation in a single step with
implicit schemes, fractional step splitting, alternating between solving for the diffusion and convection terms,
is applied in all cases for consistency in the tests.

The majority of our numerical examples will be taken from [4]. We use these examples because Bertozzi
et al. [4] present a very careful numerical and analytical investigation of Egs. (1.1) and (1.2) and the cases pre-
sented show a wide variety of behaviour in the solutions. The flux function has a point of inflexion at u = 1/3.
The form of solution is likely to change around this point, consequently in our numerical solutions we will
take limiting values for u close to this value.

2. Numerical schemes

The notation employed in the numerical calculations is as follows. We consider a uniform mesh x;,,, with a
fixed width & = Ax > 0, where x;.1» = (j+ 1/2)h, j € Z. The time mesh is given by " = nAt, with a fixed time
step size At > 0. A solution to a nonlinear convection equation may have a discontinuity and its numerical
correspondence U’ is usually considered as the approximation to the cell average of the true solution, i.e.,

1 Xjt+1/2
" u(x, ")dx. 2.1
J

Xj-1/2

We use a fractional step-splitting method to handle two terms in Eq. (1.1). The convection term will be tackled
via various implicit and explicit finite difference (or finite volume) methods which will be given in the following
section. We will observe the performance differences made by these schemes for the convection part. The dif-
fusion term will always be dealt with via an implicit method.

2.1. Finite difference for the diffusion term

First consider a finite difference scheme for the diffusion equation

U= *(,ZS(M)X, d)(u) = u3uxxx- (22)
We view u],, , as a time average of u(x,) on the interval ¢ € [¢",#"*'] at the interface x = x;;1/>. Then, after
integrating (2.2) over the mesh [x;_i/2,x;11/2] X [f",77!], one can easily check that the cell averages given by
(2.1) satisfy

A
U = U= S ) — ). >

h
where we view ¢(u],, ;) as a time average of the diffusive flux on the interval 7 € [, #"*1] at the interface
X = X;1/2. Since
u(x 4 2h) — 3u(x + k) + 3u(x) — u(x — h) = Rug(x + h/2) + O(F°),

we obtain the following finite difference representation

Uty + U’
K@, ) =2 (M) (U, =3U%, +3U1 = UTy) = &y n(UY).

J 2 J+2 J+1
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