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Abstract

In this paper, we design a class of high order accurate nonlinear weighted compact schemes that are higher order
extensions of the nonlinear weighted compact schemes proposed by Deng and Zhang [X. Deng, H. Zhang, Developing
high-order weighted compact nonlinear schemes, J. Comput. Phys. 165 (2000) 22–44] and the weighted essentially non-
oscillatory schemes of Jiang and Shu [G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Com-
put. Phys. 126 (1996) 202–228] and Balsara and Shu [D.S. Balsara, C.-W. Shu, Monotonicity preserving weighted essen-
tially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160 (2000) 405–452]. These
nonlinear weighted compact schemes are proposed based on the cell-centered compact scheme of Lele [S.K. Lele, Compact
finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16–42]. Instead of performing the non-
linear interpolation on the conservative variables as in Deng and Zhang (2000), we propose to directly interpolate the flux
on its stencil. Using the Lax–Friedrichs flux splitting and characteristic-wise projection, the resulted interpolation formulae
are similar to those of the regular WENO schemes. Hence, the detailed analysis and even many pieces of the code can be
directly copied from those of the regular WENO schemes. Through systematic test and comparison with the regular
WENO schemes, we observe that the nonlinear weighted compact schemes have the same ability to capture strong discon-
tinuities, while the resolution of short waves is improved and numerical dissipation is reduced.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

There are two typical approaches to design high order finite difference schemes for solving partial differen-
tial equations. The first is the traditional concept that the derivative of a function on the numerical grid is
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approximated by a linear combination of the function on a subset of the grid (stencil). The linear combination
coefficients should satisfy certain order conditions in order to achieve a high order accurate approximation to
the derivative. This is the standard finite difference method that is called a non-compact finite difference
scheme by Adams and Shariff [1]. The second approach to design finite difference schemes, corresponding
to the so-called compact schemes, is to form a linear combination of the unknown approximations to the
derivative at the grid points in a stencil, and equate it with another linear combination of the function itself
at the grid points in the same stencil. The word ‘‘compact” corresponds to the fact that for the same order of
accuracy, the stencil can be more compact in the second approach. However, a linear system must be solved to
obtain approximations to the derivative at the grid points for compact schemes, thus the effective stencil for
the approximation of the derivative at a grid point, in terms of the function values in the mesh, is not compact
at all. The most influential reference for compact schemes is [26].

The weighted essentially non-oscillatory (WENO) finite difference scheme [19] is a typical high order non-
compact finite difference scheme suitable for solving convection dominated partial differential equations
containing possible discontinuities in the solutions, such as the Euler or Navier–Stokes equations in compu-
tational fluid dynamics. It is an extension of the essentially non-oscillatory (ENO) scheme which was intro-
duced by Harten et al. [15]. The accuracy can be improved to the optimal order in smooth regions while
the essentially non-oscillatory property near discontinuities is maintained. The WENO idea was first intro-
duced by Liu et al. [27], in which the authors used a cell average approach (finite volume framework) to con-
vert an rth order ENO scheme to an ðr þ 1Þth order WENO scheme. Based on the pointwise finite difference
ENO scheme [38,39] and by a careful design of the smoothness indicator and nonlinear weights, the WENO
scheme in [19] can achieve the optimal ð2r � 1Þth order accuracy when converting an rth order ENO scheme,
while still keeping the essentially non-oscillatory property near shock waves. The WENO schemes have the
two desirable properties that they capture discontinuities and maintain high order accuracy. It has been
applied to many problems containing discontinuous solutions. We refer to the recent review paper [37] for
more details.

Even though the order of accuracy for explicit finite difference WENO schemes can be designed to be arbi-
trarily high, such as the eleventh order WENO scheme developed by Balsara and Shu [2], the resolution of
short waves of such high order explicit finite difference schemes is not ideal. The order of accuracy refers
to the asymptotic behavior of the scheme for solving smooth solutions when the mesh size becomes small.
In applications, for example in wave dominated problems such as aeroacoustics and turbulence, we often need
to approximate solutions on a relatively coarse mesh with respect to the wave frequencies that we would like to
resolve. The scheme’s ability to resolve short wavelengths relative to a given mesh can be represented by a dis-
persion relation. The best method to simulate wave dominated problems is the spectral method [4,11,22],
which is high order accurate and has the best dispersion relation. However, the spectral method has its
own limitation as it imposes significant restrictions on the geometry and boundary conditions. Typical explicit
high order finite difference schemes, corresponding to the choice of linear combination coefficients to maximize
the order of accuracy for a given stencil, do not have optimal dispersion relations. To overcome this drawback,
there are efforts in the literature to modify the linear combination coefficients in a finite difference scheme to
improve its dispersion relation, at the price of lowering the achievable order of accuracy corresponding to a
given stencil. Tam and Webb [42] used this strategy to develop a dispersion relation preserving (DRP) finite
difference scheme. Ponziani et al. [33] and Wang and Chen [43] also used this strategy to develop optimal
WENO schemes for dispersion relationships.

A good choice to simulate wave dominated problems is the compact scheme, which typically has better dis-
persion relation than a finite difference scheme of the same order of accuracy. Early discussion of compact
schemes can be found in [17,23]. In [26], Lele developed a family of compact schemes for the first and second
derivatives. Through systematic Fourier analysis, it is shown that these compact schemes have spectral-like
resolution for short waves. In practice, compact approximations on a cell-centered mesh has superiority
due to their smaller numerical viscosity. Nagarajan et. al [31] and Boersma [3] used staggered mesh compact
schemes to simulate compressible flows. Numerical tests indicate that their methods are quite robust. Through
coupling the second derivatives, Mahesh [28] developed a family of compact schemes with good spectral-like
resolution. Shukla and Zhong [40] developed a compact scheme for non-uniform meshes. Upwind compact
schemes were also developed [6,10,48] for solving nonlinear hyperbolic problems. The compact schemes have
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