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the minimal action path and nonlinear conjugate gradient method to solve the optimiza-
tion problem given by the Freidlin-Wentzell least action principle. The gradient of the dis-
crete action functional is obtained through the functional derivative and the moving mesh
technique is employed to enhance the approximation accuracy. Numerical examples are
given to demonstrate the efficiency and accuracy of the proposed numerical method.
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1. Introduction

Dynamical systems are often subject to random perturbations since noise is ubiquitous in nature. Even when these ran-
dom perturbations have a small amplitude, they can produce a profound effect on the long time dynamics by inducing rare
but important events. A large number of interesting phenomena in physics, chemistry and biology such as phase transitions,
biological switches and chemical reactions, etc., are examples of such noise-induced rare events [13].

When the random perturbations are small, the Freidlin-Wentzell theory of large deviations provides a rigorous mathe-
matical framework for us to understand how the transitions occur and how frequent they are. The transition pathways be-
tween metastable sets in a dynamical system often have a rather deterministic nature. As the noise amplitude decreases to
zero, the events for successful transitions between metastable sets have a sharply peaked probability around a certain deter-
ministic path that is least unlikely. Special features of such a path tell us crucial information about the mechanism of the
transition. One class of examples that have been well studied for a long time are the gradient systems, for which the vector
field is the gradient of a potential function. In gradient systems, the most probable transition path is the minimum energy
path (MEP), which passes through the basin boundary between the stable states at some saddle points with one dimensional
unstable manifold [16,20]. For non-gradient systems we need to consider the action functional instead of the energy, which
is the central object to the Freidlin-Wentzell theory. The minimizer of the action functional provides the most probable tran-
sition path; the minimum of the action functional provides an estimate of the probability and the rate of occurrence of the
transition. Thus an important practical task is to compute the minimum and minimizer of the action functional.

A large number of numerical algorithms have been designed for gradient systems. Some popular algorithms include the
string method [2,4], nudged elastic band method [12], eigenvector-following-type method (e.g. [1]) as well as the dimer
method [9], which usually take advantage of the fact that in gradient systems the transition paths are always parallel to
the drift term of the stochastic differential equation. For general (non-gradient) systems, we need to minimize directly
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the Freidlin-Wentzell action functional and available algorithms include the minimum action method [3], the adaptive min-
imum action method [18] and the geometric minimum action method [8]. Compared to gradient systems, the transition
mechanism in non-gradient systems is usually much more subtle, since the phase space may display a very complicated
structure, where invariant sets can be fixed points, as well as limit cycles, tori or even chaotic strange attractors. We refer
to [19,21] for the study of the Lorenz system and the Kuramoto-Sivashinsky equation, where it is demonstrated that the
minimum action method can be a valuable tool to explore the phase space and study the transition mechanism in non-
gradient systems.

In this work, we develop an adaptive high-order minimum action method by coupling the hp finite element approxima-
tion and a preconditioned nonlinear conjugate gradient optimization solver. In the finite element framework, the gradient of
the action functional is formulated straightforwardly with respect to the functional derivative. To enhance the accuracy, we
employ the moving meshing technique to adjust the temporal discretization adaptively. The methodology is general and can
be easily applied to both gradient and non-gradient dynamical systems.

This paper is organized as follows. In Section 2 we briefly describe the problem and the theoretical background. We pres-
ent the developed numerical method in Section 3. In Section 4, we examine the accuracy and efficiency of the method using
dynamical systems given by an ordinary differential equation and a partial differential equation, respectively. Some discus-
sions are given in Section 5.

2. Problem description and theoretical background

We consider random perturbations of dynamical systems. Let the random process X; = X(t) : R, — R" defined by the fol-
lowing stochastic ordinary differential equation (SODE):

dX; = b(X,)dt + VedW,, (1)

where W, is a standard Wiener process in R" and ¢ is a small positive parameter. Let ¢(t) € R" be an absolutely continuous
function defined for t € [0,T]. The Wentzell-Freidlin theory tells us that the probability of X(t) passing through the s-tube
about ¢ on [0,T] is

Prip(X.4) <) ~ exp (- ;5v(4)) @)

with p(, @) = supeejo,n|¢(t) — @(t)], |-| indicates the ¢, norm in R", and Si{¢) is the action functional of ¢ on [0,T], defined as

T
Sr(¢) = % /O L($,¢)dt, (3)

where L(é&, (j)) = {d) - b(¢)|2. In general, we have the following large deviation principle
limelog Pr(X € A) = — min Sr(¢), (4)
&—0 PeA

where A is a particular set of random events. Thus, in analogy with the Laplace’s method, the basic contribution to Pr(X € A) is
given by the neighborhood of the minimum of Si(¢) when ¢ is small enough. The minimizer ¢* which satisfies Si{¢*) = min,,
aS1(¢) is also called the “minimal action path” (MAP).

Different definitions of the set A in Eq. (4) correspond to many important phenomena that occur in dynamical systems.
For example,

o If we are interested in the probability of X(t) connecting one point a; and the other point a, in the phase space due to the
random perturbations, A can be defined as

A = {X(0) = a1, X(T) = a3}

The MAP will be the most probable path for the transition from a; to a; in the sense that the probability of the system taking
all the other paths decays exponentially with respect to the noise amplitude ¢ according to the large deviation principle. Note
that when a; and a, are attractors, it is more appropriate to define the set A as

A = {X(—00) = a1,X(c0) = a3}

We keep a finite time interval here mainly due to the numerical approximation discussed later.

e If a; and a, are two adjacent stable states in gradient systems, the MAP will be consistent with the minimum energy path
(MEP), which passes through the basin boundary between a; and a, at a certain saddle point with one-dimensional unsta-
ble manifold.

o If there exists dynamics between a; and a,, the MAP will be the path given by the dynamics corresponding to a zero action
functional, which implies that the MAP is also helpful for us to study the structure of the phase space. For instance, if a;
and a, are two unstable fixed points and the MAP has a zero action functional, we can conclude that there exists a het-
eroclinic orbit between a; and a,, which is given exactly by the MAP.
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