
A hierarchical fracture model for the iterative multiscale finite
volume method

Hadi Hajibeygi ⇑, Dimitris Karvounis, Patrick Jenny
Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 20 April 2011
Received in revised form 9 August 2011
Accepted 19 August 2011
Available online 7 September 2011

Keywords:
Multiscale methods
Multiscale finite volume
Iterative multiscale finite volume
Iterative multiscale methods
Fractured porous media
Hierarchical fractured modeling
Multiscale fracture modeling

a b s t r a c t

An iterative multiscale finite volume (i-MSFV) method is devised for the simulation of mul-
tiphase flow in fractured porous media in the context of a hierarchical fracture modeling
framework. Motivated by the small pressure change inside highly conductive fractures,
the fully coupled system is split into smaller systems, which are then sequentially solved.
This splitting technique results in only one additional degree of freedom for each con-
nected fracture network appearing in the matrix system. It can be interpreted as an
agglomeration of highly connected cells; similar as in algebraic multigrid methods. For
the solution of the resulting algebraic system, an i-MSFV method is introduced. In addition
to the local basis and correction functions, which were previously developed in this frame-
work, local fracture functions are introduced to accurately capture the fractures at the
coarse scale. In this multiscale approach there exists one fracture function per network
and local domain, and in the coarse scale problem there appears only one additional degree
of freedom per connected fracture network. Numerical results are presented for validation
and verification of this new iterative multiscale approach for fractured porous media, and
to investigate its computational efficiency. Finally, it is demonstrated that the new method
is an effective multiscale approach for simulations of realistic multiphase flows in fractured
heterogeneous porous media.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical formulations describing flow in natural porous media are typically governed by highly heterogeneous
anisotropic tensorial coefficients (hydraulic conductivity) at different scales. Moreover, a considerable percentage of natural
formations, e.g. carbonate reservoirs, are fractured in the sense that there exist highly conductive channels (with small aper-
tures) at various length scales acting as phase transport highways. In addition to the complex geometries, the high contrast
in the physical properties and length scales (compared to those of the matrix) results in very expensive fine scale simula-
tions. Therefore, there have been extensive studies during the past five decades to reduce the problem complexity and as
a result different modeling approaches and numerical strategies suitable for different types of fractures have been proposed
[1–16].

The dual porosity model approach and its divisions [1–4] were proposed for naturally fractured porous media with many
small fractures. More precisely, this method introduces effective coefficients for (n � 1) dimensional (D) fractures by map-
ping (upscaling) them into a continuum nD domain. This upscaling based strategy results in reasonably efficient simulations
with the cost of additional assumptions. More specifically, this method is appropriate for problems with only small scale
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fractures. For problems with long scale fractures, however, this approach fails to provide good solutions. This is due to the
fact that in this approach no general upscaling strategy is possible. Note that long fractures can be treated by dual perme-
ability approaches.

To obtain more accurate simulations, the discrete fracture modeling approach was devised; see e.g. [5,8,13]. In that ap-
proach, geometry and locations of fractures are honored accurately by using complex unstructured gridding techniques [14].
The grid is generated with the constraints that the fracture elements are located at the matrix cell interfaces and that the
matrix cells around fractures are small enough to capture the correct fracture geometries. The latter constraint often results
in very small cells, especially near intersections. Besides the fact that small cells lead to big linear systems, they also impose
time step restrictions for multiphase transport simulations.

It is very important to keep in mind that this approach has limited applicability for realistic scenarios due to the complex
conforming grids. Moreover, this approach is not suited for dynamic fracture network problems, as e.g. in simulations of en-
hanced geothermal systems, where the grid has to be updated frequently due to generations of new fractures. In such appli-
cations, it is preferable to work with independent discretizations for the discrete large fractures and the damaged matrix.

Motivated by the previously discussed issues, a hierarchical fracture modeling approach was introduced [10–12]. In this
approach, small scale fractures are homogenized and treated as a continuous damaged matrix with effective coefficients.
Large-scale fractures, on the other hand, are explicitly represented by a coupled discrete fracture model. More precisely, sim-
ple structured nD and (n � 1)D grids are independently generated for matrix and fractures, respectively. Note that neither
grid alignment nor any other constraints apply.

In this work, a hierarchical fracture modeling approach which is suited for multiscale methods [17–31] is introduced.
Moreover, as will be demonstrated later in this paper, for highly conductive fractures the proposed strategy leads to en-
hanced convergence rates. One additional constraint per fracture network is added to the matrix equations, which is crucial
to ensure enough coupling to achieve good convergence rates. Combining a hierarchical fracture model to a muliscale meth-
od for reservoir simulation is of interest, since multiscale methods are capable of honoring fine-scale transmissibility vari-
ations with much fewer degrees of freedom (DOF) than classical simulators. Such fine-scale variations become an even
bigger issue in highly fractured reservoirs. In order to properly deal with transport it is highly desirable to work with a mul-
tiscale method which delivers conservative fine-scale velocity fields; see e.g. [32,33]. Therefore, here the multiscale finite-
volume (MSFV) method is favored, which requires fewer DOFs than mixed multiscale methods and still is conservative op-
posed to e.g. the multiscale finite-element methods. Moreoever, as shown recently, in this framework the error can system-
atically be reduced [34–39]; adaptive in space and time [40]. Opposed to classical iterative solvers like algebraic multigrid
(AMG) [41], conservative solutions can be constructed after any iteration, i.e. it is not required to fully converge.

In this work, the i-MSFV method is extended for the solution of the hierarchical fracture problem using the proposed
sequential coupling strategy. To capture fractures accurately at the coarse scales, local fracture functions are introduced.
The fracture functions are solved within local problems, similar to the basis and correction functions, based on the full gov-
erning equations (with fracture-matrix couplings) subject to the reduced problem boundary conditions. This results in only
one additional coarse DOF per fracture network. Inner and outer iterations are applied to enhance the correction function
boundary conditions and for the convergence of the sequentially-coupled fracture-matrix system, respectively. A classical
iterative fine-scale solver is used as the smoother, which is necessary to guarantee convergence. Alternatively, a Krylov
sub-space method like GMRES [42] can be used to stabilize the system [37]. Here we employ line-relaxation as a smoother,
since it is very robust for problems with stretched grids. The convergence history of the new i-MSFV method for fractured
porous media is tested for a wide range of test cases. Moreover, the efficiency of the method is studied for multiphase flow in
heterogeneous and homogeneous fractured porous media. Numerical results show that the i-MSFV method is a flexible iter-
ative method which is efficient for multiphase simulations in highly heterogeneous fractured porous media.

The paper is organized as following. Section 2 consists of two subsections. First, the governing equations for the hierar-
chical fracture modeling approach together with the model parameters are introduced. Then, in the second subsection, a pre-
viously proposed tightly coupled simulation strategy is explained. The sequentially-coupled strategy is then introduced in
Section 3 followed by Section 4, where the i-MSFV method for non-fractured systems is explained. The new i-MSFV method
for the fractured porous media is introduced in Section 4; and numerical results for single and multiphase flow scenarios are
presented in Section 5. Finally, the paper is concluded in Section 6.

2. Hierarchical fracture modeling approach

In this section the hierarchical fracture modeling approach is explained. First, the governing equations together with the
model parameters, and then a previously presented fully coupled numerical simulation strategy [10,11] are explained.

2.1. Governing equations and modeling parameters

Here, Darcy’s law for incompressible multiphase flow without capillary nor gravity effects is assumed. In that case total
volume balance reads

�r � ðKkt � rpÞ ¼ qt on X � Rn ð1Þ
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