Accepted Manuscript

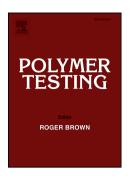
Using developed creep constitutive model for optimum design of HDPE pipes

Farid Vakili-Tahami, Mohammad Reza Adibeig

PII: S0142-9418(17)30794-8

DOI: 10.1016/j.polymertesting.2017.08.040

Reference: POTE 5153


To appear in: Polymer Testing

Received Date: 14 June 2017

Accepted Date: 29 August 2017

Please cite this article as: F. Vakili-Tahami, M.R. Adibeig, Using developed creep constitutive model for optimum design of HDPE pipes, *Polymer Testing* (2017), doi: 10.1016/j.polymertesting.2017.08.040.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Property Modelling

Using developed creep constitutive model for optimum design of HDPE

pipes

Farid Vakili-Tahami*, Mohammad Reza Adibeig

Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

Email: f_vakili@tabrizu.ac.ir

Tel: +98 413 339 2463

Abstract

Unlike metal pipes, high density polyethylene (HDPE) pipes are not susceptible to erosion and corrosion. However, the most important mechanical feature of the HDPE pipes is that this material creeps even at room temperature. Therefore, it is essential to study the creep behavior of this material in order to develop a model. In this paper, creep behavior of HDPE at different temperature and stress levels has been experimentally studied to obtain the creep constitutive parameters of the material. These parameters are used to predict the creep behavior of different structures such as HDPE pipes. For this purpose, a number of specimens have been machined from industrial manufactured pipe walls. Uniaxial creep tests have been carried out and creep strain curves with time for each test were recorded. Then, a constitutive model is proposed for HDPE based on the experimental data and optimization methods. The results of this model have been compared with the test data and good agreement is observed. The developed constitutive model and reference stress method (RSM) were used to produce graphs which provide optimum creep lifetime and design conditions for HDPE pipes that are subjected to combined internal pressure and rotation. These graphs can facilitate the design process of HDPE pipes.

Download English Version:

https://daneshyari.com/en/article/5205273

Download Persian Version:

 $\underline{https://daneshyari.com/article/5205273}$

Daneshyari.com