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a b s t r a c t

This paper describes a simplified procedure for determining the Poisson's ratio of homogeneous and
isotropic viscoelastic materials. A cylindrical shaped material is axially excited by an electromagnetic
shaker and consequent displacement waves are investigated. Using a frequency sweep as an excitation
signal, the frequency domain displacement response is measured upstream and sideways of the sample
itself. A plane cross-section analytical model of the experimental setup is used to estimate Poisson's ratio
through a minimisation-based procedure, applied to radial displacement once the complex modulus has
been directly determined under the assumption of spring-like behaviour of the axial displacement. The
results are presented and discussed for different materials and compared to well-established quasi-static
and finite element simulations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Poisson's ratio can play a relevant role in characterizing the
linear dynamic behaviour of viscoelastic materials for noise and
vibration control. In addition, this parameter occurs in several
equations to be solved within the context of analytical and nu-
merical (finite element method, statistical energy analysis, transfer
matrix method) simulations. Poisson's ratio is defined as the ratio
of lateral strain to axial strain in an axially loaded linear elastic
solid, and this ratio is a real number in the case of ideal elasticity. In
contrast, in viscoelastic materials, as a result of damping, this ratio
can be considered as a complex number [1,2]. However, several
studies [3,4] have demonstrated that a real valued and frequency-
independent Poisson's ratio can provide reliable results and can
be considered a good enough approximation when the aim is to
calculate main vibro-acoustical indicators (dynamic stiffness,
sound absorption, sound transmission loss, etc …).

In literature, several methods (direct and indirect) have been
proposed for determining mechanical parameters of materials for
vibration and noise control applications, and a comprehensive re-
view is discussed in Ref. [5]. As stated in Ref. [2], while a lot of
research has been proposed for the measurement of complex

moduli, fewer experimental works have focused on determining
Poisson's ratio. Recently, methods based on digital image correla-
tion (DIC) through uniaxial relaxation tests [6] and empirical cor-
relation between hardness and elastic moduli, along with the usual
instrumented indentation test [7], have been proposed in literature
for characterizing the Poisson's ratio of polymeric and composite
materials. Although both methods can give a reliable estimation of
Poisson's ratio, they have been applied to material having a hard-
ness which is too high if compared with foams used in noise and
vibration control applications.

The aim of this research is to present a method to determine
Poisson's ratio (real valued and frequency independent), through
measuring the radial displacement of a cylinder of homogeneous
and isotropic material at low frequencies, once the complex
modulus has been determined in advance, using a transfer matrix
approach, as described in Ref. [8]. In particular, an analytical model
for axial and radial displacement, based on the Mindlin-Hermann
two modes theory [9], has been applied and an estimation of
Poisson's ratio can be easily obtained by minimizing the difference
between experimental and numerical radial displacement in the
frequency domain. Measurement and analyses are limited in a
frequency range where all tested samples are much smaller than
the longitudinal wavelength.

The paper is organised as follows. Section 2 contains a
description of methodology. A description of the experimental set-
up and tested materials is provided in Section 3. Section 4 contains
analytical model validation, results obtained using the proposed
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methodology and a comparison of different measurement tech-
niques. The last section contains concluding remarks.

2. Description of methodology

2.1. Theoretical background

Consider a solid, elastic, isotropic cylinder of finite length L and
radius R, as shown in Fig. 1. The cylinder is assumed to be exited in
z¼ 0with a unit displacement in z coordinate (that is u (z¼ 0, r)¼ 1
and w (z ¼ 0, r) ¼ 0), and it is free to vibrate elsewhere.

Assuming axisymmetric excitation and, therefore, the response
of the cylinder and harmonic dependency on time (i.e. eiut), the
dynamic equilibrium equation can be expressed in cylindrical co-
ordinates (r, q, z) as:
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(1)

where r [kg/m3] is the material density, u [rad/s] is the angular
frequencies and srr, szz, sqq and srz are the normal and shear com-
ponents of the stress tensor. Displacement in a tangential direction
can be neglected, due to the axial symmetry of the problem,
meaning that no torsional vibration is present.

According to the Mindlin-Hermann (plane cross-section) theory
[9], the axial and radial displacement can be defined as:

uðr; zÞ ¼ u0ðzÞ
wðr; zÞ ¼ r,u1ðzÞ (2)

which correspond to the first order approximation of a power series
expansion, as discussed in Ref. [10].

Under such assumptions, it is straightforward to demonstrate
that functions u0 and u1 can be found by solving the following set of
partial differential equations:
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where S ¼ 4pR2 is the surface area of the cross-section, I2 ¼ pR4/2 is
the polar moment of inertia of the cross-section, l and m are the
lame coefficients:

l ¼ En
ð1� 2nÞð1þ nÞ m ¼ E

2ð1þ nÞ (4)

E [Pa] and n [�] being the elastic complexmodulus and Poisson's
ratio, respectively.

The set of differential equations Eq. (3) can be solved applying
the boundary conditions described here above, that can be
expressed in terms of function u0 and u1 as follows [10]:
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(5)

The reliability of the proposed analytical model will be verified
against finite element simulations in Section 4A.

2.2. Methodology

In real experimental tests, the material is mounted on an
aluminium support plate which is excited by an electromagnetic
shaker in the z direction. Consequently, an imposed displacement
(or velocity) is applied to the bottom side of the material while
remaining surfaces are free to vibrate.

Using a logarithmic sine sweep as the excitation signal, the axial
and radial velocity responses v1(t) in (z, r)¼(L, 0) and v2(t) in (z,
r)¼(L/2, R) are determined using a laser vibrometer, as shown in
Fig. 2.

Assuming time harmonic behaviour of the measured quantities
and a unit input displacement, from the experimental tests, it is
possible to calculate axial and radial displacements in the fre-
quency domain as follows:
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where V1(u)[m/s] and V2(u)[m/s] are the complex frequency
spectra calculated by applying a Fourier transform to measured
velocity signals in the time domain.

Fig. 1. A solid cylinder of length L and radius R. u and w are the axial and radial
components of displacement, respectively. Fig. 2. Measurement layout.
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