Accepted Manuscript

Effects of heat treatment on electrical conductivity of HDPE/CB composites

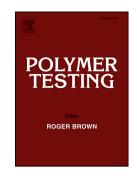
Ji-Zhao Liang

PII: S0142-9418(17)30728-6

DOI: 10.1016/j.polymertesting.2017.07.005

Reference: POTE 5085

To appear in: Polymer Testing


Received Date: 31 May 2017

Revised Date: 0142-9418 0142-9418

Accepted Date: 5 July 2017

Please cite this article as: J.-Z. Liang, Effects of heat treatment on electrical conductivity of HDPE/CB composites, *Polymer Testing* (2017), doi: 10.1016/j.polymertesting.2017.07.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Material Properties

Effects of Heat Treatment on Electrical Conductivity of HDPE/CB Composites

Ji-Zhao Liang

School of Mechanical and Automotive Engineering,

South China University of Technology, Guangzhou 510640, P.R. China

ABSTRACT

The influence of heat treatment on the electrical conductive behavior of carbon black (CB) filled high density polyethylene (HDPE) composites was investigated. The results showed that the effects of annealing temperature on the resistivity and the PTC intensity of the HDPE/CB composites were significant; the resistivity and the PTC intensity of the composites varied with increasing number of thermal cycles; while the variation became small after the third thermal cycle. Furthermore, the variation of the resistivity was 1.7 times higher than that of the composites without annealing, and the variation of the PTC intensity of the composites was 0.22, which were smaller than those of the specimens without heat treatment. A suitable annealing heat treatment could reduce the resistivity and enhance the PTC intensity of the composites; it was also helpful to improve the stability of the properties of the composites and the repeatability of the PTC effect.

Key words: polymer-matrix composites; nanoparticles; electrical properties; microstructural analysis; heat treatment.

Download English Version:

https://daneshyari.com/en/article/5205384

Download Persian Version:

https://daneshyari.com/article/5205384

<u>Daneshyari.com</u>