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Abstract

Absorbing boundary conditions for the nonlinear Euler and Navier—Stokes equations in three space dimensions are pre-
sented based on the perfectly matched layer (PML) technique. The derivation of equations follows a three-step method
recently developed for the PML of linearized Euler equations. To increase the efficiency of the PML, a pseudo mean flow
is introduced in the formulation of absorption equations. The proposed PML equations will absorb exponentially the differ-
ence between the nonlinear fluctuation and the prescribed pseudo mean flow. With the nonlinearity in flux vectors, the
proposed nonlinear absorbing equations are not formally perfectly matched to the governing equations as their linear coun-
ter-parts are. However, numerical examples show satisfactory results. Furthermore, the nonlinear PML reduces automatically
to the linear PML upon linearization about the pseudo mean flow. The validity and efficiency of proposed equations as absorb-
ing boundary conditions for nonlinear Euler and Navier—Stokes equations are demonstrated by numerical examples.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Non-reflecting boundary condition is a critical component in the development of computational fluid
dynamics (CFD) and computational aeroacoustics (CAA) algorithms. It remains a significant challenge par-
ticularly for problems involving nonlinear governing equations. Perfectly matched layer (PML) is a technique
of developing non-reflecting boundary conditions by constructing matched equations that can absorb out-
going waves at open computational boundaries. It was originally designed for computational electro-magnet-
ics [5,6,8,28,27,7]. The significance of the PML technique lies in the fact that the absorbing zone is theoretically
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reflectionless for multi-dimensional linear waves of any angle and frequency. In the past few years, substantial
progress has been made in the development of the PML technique for the Euler equations, starting with the
studies for cases with constant mean flows, followed by extensions to cases with non-uniform mean flows
[16,17,14,1,18,19,4,10,9]. Most recently, applications of PML to linearized Navier-Stokes equations and non-
linear Navier—Stokes equations have been discussed in [12,13]. A recent progress review is given in [21].

Although the PML technique itself is relatively simple when it is viewed as a complex change of variables in
the frequency domain, it is important to note that, for the PML technique to yield stable absorbing boundary
conditions, the phase and group velocities of the physical waves supported by the governing equations must be
consistent and in the same direction [3,4,9,18]. For governing equations that support physical waves of incon-
sistent phase and group velocities, such as the Euler or Navier—Stokes equations for fluid dynamics, a space—
time transformation may be required before applying the PML technique in the derivation process [18,19].
This space-time transformation corrects the inconsistency in the phase and group velocities and thus permits
the application of the PML technique. An emerging method of formulating PML involves essentially three
steps [21]:

1. A proper space-time transformation is determined and applied to the governing equations.

2. A PML complex change of variables is applied in the frequency domain.

3. The time domain absorbing boundary condition is derived by a conversion of the frequency domain
equations.

This procedure has been successfully applied to the derivation of PML for the linearized Euler equations in
[18,19].

In this paper, further application of the PML technique to the nonlinear Euler and Navier—Stokes equa-
tions is considered. Derivation of the absorbing equation is proceeded by applying the three steps outlined
above to the nonlinear Navier-Stokes equations, which include the Euler equations as a special case. How-
ever, unlike the PML for linear equations, the conversion to time domain equations does not result in formally
perfectly matched equations due to the nonlinearity in flux vectors. Nonetheless, the proposed absorbing
equations are still effective for nonlinear problem as we will show in numerical examples. Furthermore, the
nonlinear PML reduces automatically to the linear PML upon linearization. The current formulation offers
a natural extension of the linear PML to nonlinear equations. For convenience of implementation in most
existing CFD and CAA codes, all PML equations are formulated for the governing equations in the conser-
vation form.

To absorb the nonlinear disturbances, a concept of “pseudo mean flow” is introduced. This makes the PML
possible without knowing the exact mean flow at the start of the computation. Equations are derived that
absorb the difference between the pseudo mean flow and the nonlinear disturbances, including the vorticity,
acoustic, and entropy waves. One limitation of the current paper is that the pseudo mean flow is assumed
to be aligned with one of three spatial axes. Recent efforts and new developments on extending the PML
for oblique mean flows can be found in [11,2,24].

The rest of the paper is organized as follows. In the next section, the PML absorbing boundary condition is
derived for the nonlinear Navier—Stokes equations. Further discussions on the formulation are given in Sec-
tion 3. In Section 4, numerical examples that validate the effectiveness and stability of the PML for nonlinear
Euler and Navier—Stokes equations will be presented. They include the absorption of a convective isentropic
vortex in compressible flows, shear flow vortices and vortices shedded from flow over a circular cylinder, cal-
culation of flat plate boundary layers, and propagation of a 3D acoustic pulse. Concluding remarks are given
in Section 5.

2. Derivation of PML equations for nonlinear Navier—Stokes equations
2.1. Governing equations

We consider the three-dimensional compressible nonlinear Navier—Stokes equation written in the conser-
vation form as
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