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Received 21 December 2006; received in revised form 25 November 2007; accepted 10 January 2008
Available online 20 January 2008

Abstract

A stable hybridization of the finite-element method (FEM) and the finite-difference time-domain (FDTD) scheme for
Maxwell’s equations with electric and magnetic losses is presented for two-dimensional problems. The hybrid method com-
bines the flexibility of the FEM with the efficiency of the FDTD scheme and it is based directly on Ampère’s and Faraday’s
law. The electric and magnetic losses can be treated implicitly by the FEM on an unstructured mesh, which allows for local
mesh refinement in order to resolve rapid variations in the material parameters and/or the electromagnetic field. It is also
feasible to handle larger homogeneous regions with losses by the explicit FDTD scheme connected to an implicitly time-
stepped and lossy FEM region. The hybrid method shows second-order convergence for smooth scatterers. The bistatic
radar cross section (RCS) for a circular metal cylinder with a lossy coating converges to the analytical solution and an
accuracy of 2% is achieved for about 20 points per wavelength. The monostatic RCS for an airfoil that features sharp cor-
ners yields a lower order of convergence and it is found to agree well with what can be expected for singular fields at the
sharp corners. A careful convergence study with resolutions from 20 to 140 points per wavelength provides accurate
extrapolated results for this non-trivial test case, which makes it possible to use as a reference problem for scattering codes
that model both electric and magnetic losses.
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1. Introduction

Radar absorbing materials (RAM) with electric and magnetic losses are important for the reduction of the
radar cross section (RCS) in stealth applications [1]. Optimized designs may involve geometries with sharp
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edges and inhomogeneous materials. Thus, local mesh refinement may be necessary to resolve rapid variations
in the electromagnetic field and/or the material parameters.

Ampère’s law with electric losses modeled by an electric conductivity and Faraday’s law with a magnetic
conductivity that models the magnetic losses can be time-stepped as a system of first order differential equa-
tions. Several electromagnetic field solvers in the time-domain exploit this form of Maxwell’s equations. Taf-
love and Hagness [2] describe a conventional finite-difference time-domain (FDTD) scheme based on leap-frog
time integration, which suffers from the staircase approximation inherent to the FDTD scheme formulated on
structured (Cartesian) grids. Rodrigue and White [3] use hexahedral finite elements for the spatial discretiza-
tion and time step the coupled Maxwell’s equations with a leap-frog scheme, which gives a method that
reduces to the FDTD scheme on rectilinear grids. The algorithm presented by Rodrigue and White [3] does
not allow for unconditionally stable time-stepping and they do not consider tetrahedral meshes that are useful
for local mesh refinement. Rieben, Rodrigue and White also published a similar method [4] that exploits
higher order approximations for the spatial and temporal discretization. Riley and Jin [5] use finite-element
(FE) techniques to discretize with respect to space and they arrive at a wave equation for the electric field that
also involves the magnetic field. They use an explicit update algorithm of leap-frog type to compute the mag-
netic field by means of integration of Faraday’s law. However, the time-stepping scheme used for the updating
of the wave equation is not mentioned or described in their paper. Furthermore, their paper does not provide
any information on the stability properties for their time-domain method.

A combination of the FDTD scheme applied to large homogeneous regions for efficiency and the finite-ele-
ment method (FEM) for regions with complicated geometry and materials is attractive for many scattering
problems. Wu and Itoh proposed FEM–FDTD hybridizations for both two [6] and three [7] dimensions.
These schemes suffer from late-time instabilities that may be damped by temporal filtering [8]. Abenius
et al. [9] combine the FDTD scheme with an implicit FEM and numerical studies indicate that it is stable,
although no formal proof of stability is given. Monorchio et al. [10,11] proposed a hybrid that suffers from
late-time instabilities and some attempts to mitigate this problem involve averaging or extrapolation tech-
niques. Marrone and Mittra describe a way of interfacing triangles [12] and tetrahedrals [13] to FDTD cells
but no explicit Courant criterion is derived. Rylander and Bondeson presented a stable FEM–FDTD hybrids
[14,15] for 3D problems that are stable up to the Courant condition of the FDTD scheme, where convergence
studies [15] and proofs of stability [15,16] are available in the literature. We emphasize that the treatment of
magnetically lossy materials is not considered in any of these articles on hybrid FEM–FDTD algorithms.

There is a broad selection of numerical techniques that are formulated in the frequency domain [17,18],
such as the method of moments (MoM) that may be accelerated by the multi-level fast multipole method
(MLFMM) for electrically large scattering problems. The MoM is particularly efficient for scattering prob-
lems with many different incident angles. However, it provides the response for only one single frequency
in contrast to time-domain field solvers that yield the response in a broad frequency-interval. The MoM
can handle inhomogeneous materials and it may be formulated in the time domain, but such methods are com-
putationally expensive and difficult to program. For problems that feature non-linear media, frequency
domain methods in general and the MoM in particular are inappropriate, if not impossible, to use.

In this paper, we present a stable FEM–FDTD hybrid method for electromagnetic problems in two dimen-
sions that feature complex geometry with materials that have both electric and magnetic losses. In contrast to
what is available in the open literature on the FEM treatment of magnetic losses in combination with electric
losses, our method is distinguished by a number of unique features: (i) an unconditionally stable time-stepping
scheme based on FE techniques and Galerkin’s method applied to the first order system of Ampère’s and Far-
aday’s law; (ii) a proof of stability for this type of implicit FEM; and (iii) a generalization of the stable FEM–
FDTD hybrid [14] for 2D problems that is stable up to the Courant condition of the FDTD scheme. The
unconditionally stable time-stepping scheme that we present in this paper, reduces to a special case of the con-
ventional Newmark scheme [19] when it is applied to problems without magnetic losses. The FE techniques
used to construct the unconditionally stable time-integration scheme offers the possibility to also treat disper-
sive materials [20]. In addition, we demonstrate that it is feasible to use the FEM–FDTD interface in regions
that have both electric and magnetic losses. We would like to stress that the two-dimensional case is important
for the design of wing profiles intended for stealth aircraft, and we will consider the corresponding 3D formu-
lation in a future publication since the 3D Maxwell problem is significantly different from the 2D problem. For
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