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a b s t r a c t

Creep rupture (plasticity controlled failure) and slow crack growth are two important failure mechanisms
that limit the lifetime of polymer constructions under load. Since both require different approaches to
predict lifetime or improve the materials performance, the identification of the active mechanism is
essential. Problems arise when the macroscopic failure mode is identical (i.e. brittle) in both cases (e.g. in
composite systems).

In this study, it is shown that both mechanisms can be distinguished effectively by comparing lifetimes
in static and cyclic fatigue. At equal value of the maximum load, plasticity-controlled failure is postponed
in cyclic loading, whereas crack propagation is significantly accelerated. The origin of this specific
response is discussed, and its generic character demonstrated for a great variety of engineering polymers.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Failure under static or cyclic loading conditions is a major
concern in the application of polymers in structural applications; it
is not the questionwhether it will fail, but rather on what time scale.
From efforts to develop predictive methods, and work on pressur-
ized polyethylene pipes in particular, it is known that there are
three failure mechanisms that limit the lifetime of polymers under
load: I) plasticity controlled failure (creep rupture, delayed
yielding), II) slow crack growth, and III) molecular degradation
[1,2]. All three mechanisms act in parallel, creating three distinct
regions in time where failure is dominated by one of them. In en-
gineering practice, the focus is mostly on regions I and II, since, with
advancement in stabilization chemistry, molecular degradation is
no longer regarded as a limiting factor [3].

In many cases, these two failure mechanisms are easy to
distinguish, since plasticity controlled failure is often accompanied
by a ductile macroscopic failure mode, displaying large local plastic
deformation zones [4,5], whereas in crack growth brittle macro-
scopic dominated failure mode is observed; precursors of cracks

grow until one of them becomes unstable or causes functional
problems [2,6,7]. Unfortunately, however, this strong and obvious
contrast between them is not universal. In some cases of plasticity
controlled failure the strain localization can be extreme, resulting
in a “brittle” macroscopic appearance [8]. This can be related to
changes in thermal history (progressive physical ageing [9,10],
cooling rate [11]), a decrease in molecular weight [5,12], or to fibre
reinforcement [13]. In such cases, one could erroneously conclude
that the lifetime is dominated by slow crack growth, while its origin
is actually local accumulation of plastic strain. A misinterpretation
of the active failure mechanismmay have serious consequences. On
the one hand, the prediction of the lifetime requires a quite
different approach for plasticity controlled failure [14e16]
compared to slow crack growth [2,7,9]. On the other hand, strate-
gies to improve the slow crack growth performance are generally
not effective, or even counterproductive, for the plasticity-
controlled failure mode. A prime example is the introduction of a
soft dispersed phase in the matrix material. Although this effec-
tively improves crack growth resistance [17,18], it strongly reduces
the yield stress leading to a decreased lifetime in the plasticity-
controlled region [19,20]. It is, therefore, evident that the correct
identification of the active failure mechanism is of the utmost
importance.* Corresponding author.
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In this study, we will present an easy method that can unam-
biguously identify the active failure mode in all cases, and proves
especially useful in those where the macroscopic failure mode does
not allow clear differentiation. The method is based on direct
comparison of the lifetime in static and cyclic fatigue, at equal value
of the maximum stress applied. To clarify why plasticity-controlled
failure and crack-growth show a quite different response upon a
change in loading history from static to cyclic loading, the phe-
nomenology of each failure mechanism will be elucidated, along
with the basic principles of the predictive methods applicable.
Subsequently, the versatility of the method will be demonstrated
on a large selection of engineering plastics, including a number that
are fibre-reinforced.

2. Phenomenology of time-dependent failure

2.1. Crack-growth controlled failure

Small initial flaws within or on the surface of the material result
in local stress concentrations that can initiate/form cracks that can,
subsequently, gradually grow to a critical size and lead to a loss of
structural integrity [2,6,7].

Stresses around a crack tip are quantified using Linear Elasticity
Fracture Mechanics (LEFM) [21], and scale with the stress intensity
factor, K, which for a crack opening loading (mode I) is defined by:

KI ¼ Ys
ffiffiffiffiffiffi
pa

p
(1)

where s is the remote stress, a the crack length and Y a geometry
factor that usually depends on the crack length a. The crack prop-
agation rate _a, is related to the stress intensity factor by a power law
relation known as the Paris law [22]:

_a ¼ A$Km
I (2)

In a double logarithmic plot of the crack propagation rate versus
the stress intensity factor, the pre-factor A is the intersection at
KI ¼ 1, while m is the slope. Using these crack propagation kinetics,
the time to failure, tf, caused by slow crack growth in a specimen
under constant load, can be determined by integration of the crack
propagation rate, Equation (2), from the initial flaw size, ai, to the
crack length at which failure occurs, af [2,7,23]. In combinationwith
Equation (1), this yields:
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It is often assumed that initial cracks of length ai are already
present in the material, implying that the time to initiate a crack
ti ¼ 0. In that case, Equation (3) reduces to:
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The application of this approach, where ai is essentially used as a
fitting parameter, usually yields an accurate description of the
failure kinetics (dependence on applied load and temperature)
[2,7,24]. This clearly suggests that, even if an initiation process
occurs, the time required has to be negligible compared to the total
lifetime.

Equation (4) illustrates that the time-to-failure is also presented
by a power law, with a scaling factor, cf, representing the applied
stress that leads to a lifetime of 1 s. In a double logarithmic plot of
applied stress versus the time-to-failure, a linear relation is

typically found, while the slope equals the reciprocal of the Paris
law exponent m.

From experimental studies on crack growth kinetics, it is known
that in cyclic loading the crack propagation rate is significantly
enhanced [23e28]. In cyclic fatigue, one can vary the minimum
load, mean load, maximum load, load amplitude, and of course
frequency. In this work, the cyclic load signal is characterized by the
frequency, f, the load maximum, and the load amplitude, expressed
as the load ratio, R:

R ¼ Fmin

Fmax
(5)

As illustrated in Fig. 1, R¼ 1 represents static loading conditions,
while a decreasing R-value increases the load amplitude. The stress
intensity factor at the load maximum, Kmax, is used here as a
reference for the load applied, and the corresponding fatigue crack
propagation rate (Equation (2)) is, consequently, redefined to:

_a ¼ A$Km
max (6)

The pre-factor A shows a clear dependence on load ratio, fre-
quency, temperature and molecular weight, whereas the slope m
remains approximately unchanged [25,28e31]. Likewise, in the
prediction of time-to failure, Equation (4), only the scaling factor cf
will vary with load ratio and frequency.

When cyclic fatigue is performed on Compact Tension speci-
mens (CT-specimens, made of polyetherimide (PEI 1010), here just
as an example), the crack propagation rate increases with
decreasing load ratio R (increasing load amplitude), see Fig. 2a. As a
result, the time-to-failure of smooth unnotched bars in cyclic fa-
tigue also decreases with decreasing load ratio (Fig. 2b).

This enhanced crack propagation was suggested to be related to
failure of fibrils bridging the craze zone proceeding the crack tip
[31,32]. The fibrils support part of the load, which, in static loading,
causes them to slowly break down due to disentanglement or chain
scission [33]. During cyclic loading, the fibrils at the crack tip are
alternatingly stretched and compressed. This can lead to bending
and, for sufficiently large amplitudes, buckling or even crushing of
fibrils [34], which provokes fibril failure and increases the crack
propagation rate. As a result, the times-to-failure decrease under
cyclic loading with larger load amplitudes (smaller load ratio's R)
and at higher frequencies [34,35].

Fig. 2a and b clearly show that the slope, determined by the Paris
law exponent, m, is independent of R-value, and the only variable
changing with the load ratio is A and, consequently, cf. The same

Fig. 1. Schematic illustration of the static and cyclic loading and how the load ratio R
effects the load amplitude.
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