Accepted Manuscript

Effects of POSS vertex group on structure, thermal and mechanical properties of PMMA/POSS hybrid materials

Cesar H. Wanke, Denise Pozzo, Caroline Luvison, Israel Krindges, Cesar Aguzzoli, Marcio R.F. Soares, Otávio Bianchi

PII: S0142-9418(16)30402-0

DOI: 10.1016/j.polymertesting.2016.07.022

Reference: POTE 4722

To appear in: Polymer Testing

Received Date: 2 May 2016
Revised Date: 7 July 2016
Accepted Date: 22 July 2016

Please cite this article as: C.H. Wanke, D. Pozzo, C. Luvison, I. Krindges, C. Aguzzoli, M.R.F. Soares, O. Bianchi, Effects of POSS vertex group on structure, thermal and mechanical properties of PMMA/POSS hybrid materials, *Polymer Testing* (2016), doi: 10.1016/j.polymertesting.2016.07.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Effects of POSS Vertex Group on Structure, Thermal and Mechanical

Properties of PMMA/POSS Hybrid Materials

Cesar H Wanke¹, Denise Pozzo², Caroline Luvison¹, Israel Krindges¹, Cesar Aguzzoli¹,

Marcio R. F. Soares¹, Otávio Bianchi¹

¹Materials Science Graduate Program (PGMAT) University of Caxias do Sul (UCS), Caxias

do Sul, Brazil

² University of Caxias do Sul (UCS), Caxias do Sul, Brazil

Abstract

This paper explores the preparation of polymethyl methacrylate (PMMA/POSS) hybrid

materials in bulk polymerization. The effects of pendant polyhedral oligomeric silsesquioxane

type and content were investigated. The materials were characterized by Fourier transform

infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), field emission

scanning electron microscopy (SEM-FEG), wide-angle X-ray diffraction (WAXD),

synchrotron small-angle X-ray scattering (SAXS), thermal, thermo-mechanical, and

mechanical properties. All materials showed no particles agglomerated on a micrometric

scale, which contributed to the formation of optically transparent materials. Regardless of the

POSS type or content, the use of POSS produced no change in the molecular packing of

PMMA. A higher relation between the chain size/topological restrictions of movement was

not observed for significant changes in the glass transition temperature, softening

temperature, or thermal deflection. The interfacial thickness (E) was dependent on the amount

and type of POSS used. Lower E values caused a greater increase in elastic modulus.

Keywords: PMMA; POSS; hybrid materials; bulk polymerization

Download English Version:

https://daneshyari.com/en/article/5205897

Download Persian Version:

https://daneshyari.com/article/5205897

<u>Daneshyari.com</u>