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a b s t r a c t

This work proposes a domain adaptive stochastic collocation approach for uncertainty
quantification, suitable for effective handling of discontinuities or sharp variations in the
random domain. The basic idea of the proposed methodology is to adaptively decompose
the random domain into subdomains. Within each subdomain, a sparse grid interpolant is
constructed using the classical Smolyak construction [S. Smolyak, Quadrature and interpo-
lation formulas for tensor products of certain classes of functions, Soviet Math. Dokl. 4
(1963) 240–243], to approximate the stochastic solution locally. The adaptive strategy is
governed by the hierarchical surpluses, which are computed as part of the interpolation
procedure. These hierarchical surpluses then serve as an error indicator for each subdo-
main, and lead to subdivision whenever it becomes greater than a threshold value. The
hierarchical surpluses also provide information about the more important dimensions,
and accordingly the random elements can be split along those dimensions. The proposed
adaptive approach is employed to quantify the effect of uncertainty in input parameters
on the performance of micro-electromechanical systems (MEMS). Specifically, we study
the effect of uncertain material properties and geometrical parameters on the pull-in
behavior and actuation properties of a MEMS switch. Using the adaptive approach, we
resolve the pull-in instability in MEMS switches. The results from the proposed approach
are verified using Monte Carlo simulations and it is demonstrated that it computes the
required statistics effectively.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Micro-electromechanical systems (MEMS) have been used in widespread applications such as micro-switches, gyro-
scopes, accelerometers, etc. In order to design and analyze such devices it is required to accurately model the interaction
of various physical fields such as mechanical, electrical and fluidic. In recent years, advances in numerical simulation meth-
ods have increased the ability to accurately model these devices [2–5]. These simulation methods assume that the material
properties and various geometrical parameters of the device are known in a deterministic sense. However, low cost manu-
facturing processes used for MEMS often result in significant uncertainties in these parameters which may lead to large var-
iation in the device performance. Thus, in order to design reliable and efficient electrostatic MEMS devices, it is required to
quantify the effect of uncertain input parameters on various relevant performance parameters.
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Uncertainties can be described using stochastic quantities – uncertain parameters can be modeled using random vari-
ables and uncertain spatial functions are represented as random fields. Using this, the original governing equations can
be reformulated as stochastic partial differential equations (SPDEs). Traditionally, sampling based methods such as Monte
Carlo (MC) method has been used for systems with random input parameters. It involves generating various realizations
of the input parameters according to the underlying probability distribution, and repeatedly employing the deterministic
solver for each realization. Although the MC method is straightforward to implement and readily generates the required
statistics, the simulations may become expensive as it offers slow convergence rate. Notably, the convergence rate for the
MC method does not depend on the number of random dimensions or the smoothness of the stochastic solution in the
random domain. The convergence of the MC method can be improved by using techniques such as the Latin hypercube
sampling (LHS) [6], the quasi-Monte Carlo (QMC) method [7] and the Markov Chain Monte Carlo (MCMC) method [8],
etc.

An important non-sampling approach is based on stochastic Galerkin method, where the basic idea is to project the un-
known stochastic solution onto a stochastic space spanned by complete orthogonal polynomials. The stochastic Galerkin
method was initially developed by Ghanem and Spanos [9] using Wiener–Hermite polynomial chaos expansion [10], where
the orthogonal polynomials are chosen as global hermite polynomials in terms of Gaussian random variables. This idea was
further generalized by Xiu and Karniadakis [11], to obtain exponentially converging algorithms even for non-Gaussian ran-
dom variables. We developed a stochastic Lagrangian framework based on generalized polynomial chaos (GPC) in [12], to
handle the uncertain electromechanical interaction. It was demonstrated that the stochastic framework can be effectively
used to quantify the effect of uncertain input parameters on the performance of MEMS devices, as long as the solution is
smooth in the random domain.

The stochastic Galerkin method provides high accuracy and faster convergence rate. However, as the number of stochastic
dimensions of the problem increases, the number of basis functions needed to obtain accurate results increases rapidly,
which reduces the efficiency. Also, the coupled nature of the deterministic equations that need to be solved to determine
the modes of the solution makes the implementation non-trivial. It may be further complicated in situations when the gov-
erning equations take complicated form, such as nonlinear terms and coupled multiphysics.

In recent years, another class of methods known as stochastic collocation method [13–15] has been explored. The sto-
chastic collocation method provides high resolution as stochastic Galerkin method, as well as easy implementation as the
sampling based methods. This approach is based on approximating the unknown stochastic solution by constructing sparse
grid interpolants in the multi-dimensional random domain, based on the Smolyak algorithm [1]. Using this algorithm, inter-
polation schemes can be constructed with orders of magnitude reduction in the number of support nodes to give the same
level of approximation (up to a logarithmic factor) as the usual tensor product.

The stochastic Galerkin and collocation approaches provide fast converging approximations as compared to the sampling
based methods, assuming that the unknown stochastic solution is sufficiently smooth in the random domain. However, in
many physical systems, small variations in the uncertain parameters may lead to jumps in the solution. For example, in
MEMS actuators, because of the nonlinear nature of the electrostatic actuation force, small variation in material properties
and geometrical parameters may lead to a well known phenomenon known as pull-in. This pull-in instability is manifested as
a discontinuity in the switch displacement in the random domain. In order to accurately compute the statistics of the sto-
chastic solution in such situations, it is important to correctly capture these discontinuities in the random domain. To this
end, several efforts have been made using the Galerkin approach, such as the wavelet based Weiner–Haar basis functions
[16,17] and the multi-element GPC (ME-GPC) method [18,19]. The basic idea of ME-GPC is to adaptively decompose the ran-
dom domain into a set of random elements, and then to employ a GPC expansion within each element to locally approximate
the stochastic solution. This leads to a set of coupled deterministic equations that need to be solved within each random
element. An adaptive sparse grid collocation methodology was presented in [15], based on the dimensional adaptive quad-
rature algorithm given in [20], to study the equilibrium jumps encountered during the stochastic modeling of natural con-
vection problems. This approach automatically detects the more important dimensions and the sparse sampling is
appropriately biased in those dimensions.

This work proposes a domain adaptive stochastic collocation approach to effectively handle discontinuities or sharp varia-
tions in the random domain. The basic idea of the proposed methodology is to adaptively decompose the random domain
into subdomains. Within each subdomain, we then construct the sparse grid interpolant using the classical Smolyak con-
struction in a hierarchical fashion, to approximate the stochastic solution locally. The adaptive strategy is governed by
the hierarchical surpluses, which are computed as part of the interpolation procedure. These hierarchical surpluses then serve
as an error indicator for each subdomain, and lead to subdivision whenever it becomes greater than a threshold value. The
hierarchical surpluses also provide information about the more important dimensions, and accordingly the random elements
can be split along those dimensions.

During the preparation of this manuscript, the authors came across two recent methods which also deal with problems
with limited regularity in the stochastic domain. The first approach, multi-element probabilistic collocation method (ME-
PCM) proposed by Foo et al. [21], discretizes the parametric space, and prescribes a collocation/cubature grid on each ele-
ment. Although, both the ME-PCM method and our approach, adaptively decompose the parametric space into elements,
the construction of the interpolant within each random element, and, more importantly, the computation of local error indi-
cators, which ultimately leads to adaptive refinement, are significantly different. For the benefit of readers, we summarize
the key differences between the two approaches as follows:
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