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a b s t r a c t

An operator splitting method is proposed for the Degasperis–Procesi (DP) equation, by
which the DP equation is decomposed into the Burgers equation and the Benjamin–
Bona–Mahony (BBM) equation. Then, a second-order TVD scheme is applied for the Burgers
equation, and a linearized implicit finite difference method is used for the BBM equation.
Furthermore, the Strang splitting approach is used to construct the solution in one time
step. The numerical solutions of the DP equation agree with exact solutions, e.g. the mul-
tipeakon solutions very well. The proposed method also captures the formation and prop-
agation of shockpeakon solutions, and reveals wave breaking phenomena with good
accuracy.

Published by Elsevier Inc.

1. Introduction

In this paper, we present an operator splitting method for the numerical solutions of the Degasperis–Procesi equation [19]

ut þ 3j3ux � uxxt þ 4uux ¼ 3uxuxx þ uuxxx: ð1Þ

Degasperis and Procesi [19] studied a family of third order dispersive nonlinear equations

ut � a2uxxt þ cuxxx þ c0ux ¼ ðc1u2 þ c2u2
x þ c3uuxxÞx; ð2Þ

with six real constants c0; c1; c2; c3; c;a 2 R. They found that there are only three equations were asymptotically integrable,
i.e. the Korteweg-de Vries (KdV) equation ða ¼ c2 ¼ c3 ¼ 0Þ, the Camassa–Holm (CH) equation c1 ¼ � 3c3

2a2 ; c2 ¼ c3
2

� �
, and one

new equation c1 ¼ � 2c3
a2 ; c2 ¼ c3

� �
, which is named the Degasperis–Procesi (DP) equation later on.

The Camassa–Holm equation

ut þ 2j2ux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx; ð3Þ

was first derived by Fokas and Fuchssteiner [24] as a bi-Hamiltonian system and then has attracted considerable attention
since it was derived as a model equation for shallow water waves in 1993 [4]. The Camassa–Holm equation has been shown
to be completely integrable [5]. Explicit form of multipeakon solutions for the Camassa–Holm equation was found by Beals
et al. when k – 0 [2]. An approach based on the inverse scattering transform method (IST) provides an explicit form of the
inverse mapping in terms of Wronskian [15].

The Degasperis–Procesi equation only differs from the Camassa–Holm equation by coefficients. Degasperis et al. proved
the integrability of the DP equation by constructing a Lax pair and a bi-Hamiltonian structure [18]. These two equations
share some common properties. They both can be viewed as the models of shallow water waves [4,5,31,16]. When j – 0,
the Camassa–Holm equation is related to the AKNS shallow water wave equation by a hodograph transformation [41],
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and the Degasperis–Procesi equation is related to the Hirota-Satsuma shallow water wave equation by a similar hodograph
transformation [37]. By use of the above findings, Matsuno obtained the multisoliton solutions of the DP equation when
j – 0 [37,38]. When j ¼ 0, both the CH and the DP equations have multipeakon solutions, the explicit form of multipeakon
solution of the DP equation was found by Lundmark and Szmigielski by solving an inverse scattering problem of a discrete
cubic string [34,35]. Furthermore, the peakon solutions for both the CH equation and the DP equation are orbitally stable
[17,32].

On the other hand, although the DP equation has an apparent similarity to the CH equation, there are major structural
differences between these two equations such as the Lax pair, wave breaking phenomena and the solutions. The isospectral
problem in the Lax pair for the DP equation is the third-order equation [18], while the isospectral problem for the CH equa-
tion is the second order equation [4]. It is worth noting that Lundmark [36] showed that, when j ¼ 0, the DP equation has
not only one peakon solution, uðx; tÞ ¼ ce�jx�ctj but also a shock peakon solution of the form

uðx; tÞ ¼ ce�jx�ctj þ sgnðx� ctÞ s
1þ ts

e�jx�ctj; ð4Þ

where c; sðs > 0Þ are constants. Moreover, it is recently shown by Escher et al. [21] that the DP equation possesses a periodic
shock wave solution given by

uðx; tÞ ¼
cosh 1

2ð Þ
sinh 1

2ð Þ
t þ c

� ��1
sinh x�½x��1

2ð Þ
sinh 1

2ð Þ
; x 2 R n Z; c > 0;

0; x 2 Z:

8><
>:

Lundmark further extended the multipeakon solution of the DP equation to multi-shockpeakon solution [36]

uðx; tÞ ¼
Xn

i¼1

miðtÞe�jx�xiðtÞj þ
Xn

i¼1

siðtÞsgnðx� xiÞe�jx�xiðtÞj; ð5Þ

where miðtÞ; xiðtÞ and siðtÞ stand for the momentum, position and strength of the ith shockpeakon. It is shown that (5) is a
weak solution of the DP equation if and only if miðtÞ; xiðtÞ and siðtÞ; i ¼ 1; . . . ;n satisfy a system of ODEs ((2.4) and (2.5) in
[36]). However, the integrability and the explicit form of above solution are still unclear even for n ¼ 2 case. The only explicit
form available is one shockpeakon solution mentioned above in (4).

Note that these peakons and shockpeakons are not the strong solutions in the Sobolev space Hs; s P 3
2, but the global weak

solutions in H1[20]. Existence of these discontinuous (shock waves, [36]) solutions of the DP equation shows that the DP
equation would behave radically different from the Camassa–Holm equation, but similar to the inviscid Burgers equation,
which implies that a well-posedness theory should depend on some functional spaces which contain discontinuous func-
tions. Indeed, this observation was confirmed by Coclite and Karlsen [11–13]. In [11–13], they proved the global existence
and uniqueness of L1 \ BV entropy weak solutions satisfying an infinite family of Kruz̆kov-type entropy inequalities. and also
proved existence of bounded weak solutions by an Oleĭnik-type estimate for L1 solutions to the DP equation with j ¼ 0.

For the purpose of numerical tests, the explicit form of two-peakon solution uðx; tÞ ¼
P2

i¼1miðtÞe�jx�xiðtÞj is listed here.

x1ðtÞ ¼ log
ðk1 � k2Þ2b1b2

ðk1 þ k2Þðk1b1 þ k2b2Þ
; x2ðtÞ ¼ logðb1 þ b2Þ; ð6Þ

m1ðtÞ ¼
ðk1b1 þ k2b2Þ2

k1k2 k1b2
1 þ k2b2

2 þ
4k1k2
k1þk2

b1b2

� � ; m2ðtÞ ¼
ðb1 þ b2Þ2

k1b2
1 þ k2b2

2 þ
4k1k2
k1þk2

b1b2

; ð7Þ

with bkðtÞ ¼ bkð0Þet=kk . Here k1; k2 are nonzero distinct constants, and b1ð0Þ and b2ð0Þ are two positive constants.
In the last decade, a lot of numerical schemes have been proposed for the Camassa–Holm equation. These include pseudo-

spectral method [29], finite difference schemes [27,10], a finite volume method [1], a finite element method [43], multi-sym-
plectic methods [14], a particle method based on the multipeakon solutions of the Camassa–Holm equation [6–8,28], an
energy-conserving Galerkin scheme [39], and a self-adaptive mesh method based on an integrable semi-discretization of
the Camassa–Holm equation [40,23]. On the contrary, the numerical methods available for the Degasperis–Procesi equation
are only a few. Coclite et al. proposed several operator splitting schemes for the DP equation and proved convergence of
those finite difference schemes to entropy weak solutions [10]. On the other hand, Hoel investigated entropy weak solutions
of the DP equation numerically by a particle method based on the multi-shockpeakon solutions [26]. It is necessary to con-
struct more effective numerical methods for the Degasperis–Procesi equation. The purpose of the present paper is to provide
an operator splitting method for the numerical simulations of discontinuous solutions of the DP equation.

The remainder of the present paper is organized as follows. in Section 2, we present the operator splitting strategy, by
which the Degasperis–Procesi equation is decomposed into the Burgers equation and the Benjamin–Bona–Mahony (BBM)
equation. Then, extensive numerical experiments are performed in Section 3. These include peakon propagation and inter-
actions, peakon–antipeakon interactions, shockpeakon–shockpeakon interactions, as well as initial value problems for some
nonexact initial conditions. A good agreement is obtained in comparing exact and numerical solutions. In addition, the the-
oretical results of wave breaking phenomena are verified and explored numerically. Concluding remarks and comments are
given in Section 4.
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