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Abstract

A general approach for incorporating embedded boundaries into an electromagnetic finite difference time domain
(FDTD) code is presented. This algorithm is shown to satisfy Gauss’s law and enforces no magnetic monopoles while
maintaining a globally second-order result (first-order at physical boundaries), with no added time-step restriction. The-
oretically predicted superior results are shown with an 11% time-step reduction from the Courant stability limit. This is
achieved through a physics-based flux limiting scheme near physical boundaries. Stability, local truncation error and
energy conservation analysis are also provided.
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1. Introduction

The finite difference time domain (FDTD) technique for solving Maxwell’s equations has been a very pow-
erful tool in the simulation of electromagnetic phenomena since its introduction by Yee [1]. Computational
efficiency, ease of implementation, second-order accuracy (in the absence of physical boundaries) and energy
conservation are among the method’s many positive qualities. Furthermore, this scheme can be extended to
include plasmas with particle-in-cell (PIC) techniques. However, a key weakness of the scheme is the low order
boundary representation of physical geometry which can drop the global accuracy of the method to first-order
for many physical geometries.

There have been many attempts to mitigate the errors caused by stair-cased boundaries in FDTD simula-
tions through both the use of unstructured grids and solving Maxwell’s equations on cut cells embedded in an
otherwise structured grid. While fully unstructured grids are the mainstay in frequency domain codes, they are
making inroads into time domain applications both for finite vols [2], finite element methods [3] and for spec-
tral element codes [4]. These methods offer the flexibility of unstructured gridding, however they are more
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complicated to implement, can suffer from long-time instabilities [5] and the incorporation of particles into
these simulation techniques [6] is an unresolved area of research.

Several modifications to the standard FDTD algorithm have been proposed which maintain the inherit sim-
plicity in the bulk of the domain and require special attention only adjacent to physical boundaries. The first
of these is the scheme of Dey and Mittra [7], where the time-step is reduced and fractional cells of a sufficient
size are handled through the standard algorithm. The work by Yu and Mittra [8] removed the time-step
restriction required by [7], however, as shown in [9], the Yu–Mittra algorithm has a lower level of accuracy
than the Dey–Mittra scheme. Benkler et al. [9] proposed a modified scheme similar to Yu–Mittra which sim-
plified the computation and incorporated a reduced time-step to improve accuracy through improved account-
ing of the magnetic field area. The Benkler scheme shows improved accuracy over the Dey–Mittra and Yu–
Mittra schemes listed above. Contour methods originally proposed by Jurgens et al. [10] modify the standard
FDTD by using the integral forms of Maxwell’s equations near physical boundaries. These methods, like the
Dey–Mittra scheme, require a reduction in time-step to maintain stability.

In addition to the schemes listed above there exist a class of schemes known as area borrowing algorithms
[11]. These algorithms enlarge cell volumes over a threshold by moving volume from a full cell to a partial cell
in order to stabilize small cells. This class of methods trade the numerical complexity of updating partial cells
below the stability limit with the geometric complexity of creating a set of sufficiently large cells around a phys-
ical boundary, which can be intractable in three-dimensions.

This article presents a new procedure for representing conformal boundaries within an FDTD code. This
work is inspired by the research of Berger and Leveque [12] and Colella et al. [13] where the fluxes into a com-
putational cell are redistributed based on geometric considerations. Unlike the schemes listed above, individ-
ual fluxes are limited on a face-by-face basis instead of a cell based flux redistribution.

A brief review of the traditional FDTD method proposed by Yee [1] follows. Section 3 presents a
detailed one-dimensional analysis the stability, accuracy and energy conservation properties of the proposed
method. Section4 extends the one-dimensional algorithm to multiple dimensions. Results showing second-
order accuracy are presented for simple cavity problems and qualitative results are given for more complex
geometries.

2. Standard finite difference time domain

We start with Maxwell’s equations shown in differential form,
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r � B ¼ 0 ð1cÞ
r �D ¼ q ð1dÞ
B ¼ lH ð1eÞ
D ¼ �E ð1fÞ

where E and H are the electric and magnetic fields respectively, D and B are the electric and magnetic flux
densities respectively and l, �, q and J are the material permeability, permittivity, charge and current densities.
The speed of light, c ¼ 1ffiffiffi

l�
p , is defined for convenience. Values written as V are assumed to be vectors of the

form ðV x; V y ; V zÞ.
The standard finite difference time domain (FDTD) solves these equations in a leap-frog method on a stag-

gered grid as shown in Fig. 1. This leads to the standard update equation:
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