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a b s t r a c t

We develop a fast sweeping method for the factored eikonal equation. By decomposing the
solution of a general eikonal equation as the product of two factors: the first factor is the
solution to a simple eikonal equation (such as distance) or a previously computed solution
to an approximate eikonal equation. The second factor is a necessary modification/correc-
tion. Appropriate discretization and a fast sweeping strategy are designed for the equation
of the correction part. The key idea is to enforce the causality of the original eikonal equa-
tion during the Gauss–Seidel iterations. Using extensive numerical examples we demon-
strate that (1) the convergence behavior of the fast sweeping method for the factored
eikonal equation is the same as for the original eikonal equation, i.e., the number of itera-
tions for the Gauss–Seidel iterations is independent of the mesh size, (2) the numerical
solution from the factored eikonal equation is more accurate than the numerical solution
directly computed from the original eikonal equation, especially for point sources.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The eikonal equation

jrTj2 ¼ S2ðxÞ ð1Þ

describes the traveltime TðxÞ of a wave propagating with slowness (refraction index) SðxÞ in space x 2 Rn. In the case of
anisotropic wave propagation, S depends additionally on rT=jrTj. When SðxÞ is equal to one, the traveltime TðxÞ corre-
sponds to the distance function.

The eikonal equation plays an important role in many practical applications: computer vision, material science, compu-
tational geometry, etc. [16]. In seismic imaging, in particular, finite-difference solutions of the eikonal equation are used rou-
tinely for computing traveltime tables for numerical modeling and migration of seismic waves [22,20,17,10]. Although
limited for computing only first-arrival traveltimes [7], eikonal solvers can be extended in several different ways to image
multiple arrivals [3].

In this paper, we derive the factored eikonal equation by assuming that either an analytical or a numerical solution is
available for Eq. (1) in the same domain but with different right-hand side. The solution TðxÞ is then represented as a product
of the known solution and an unknown factor, which satisfies the factored eikonal equation. The hope is that if TðxÞ is some
perturbation of the available solution, solving the factored eikonal equation either is easier or produces more accurate solu-
tion numerically.
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We develop a numerical algorithm based on the fast sweeping method to solve the factored eikonal equation and to eval-
uate the resultant gain in accuracy. The fast sweeping method (FSM) is an efficient iterative method that uses Gauss–Seidel
iterations with alternating orderings to solve a wide range of Hamilton–Jacobi equations and other type of hyperbolic prob-
lems [4,27,19,26,8,9,25,15,14,24]. With an appropriate upwind scheme that captures the causality of the underlying partial
differential equation, the iteration can converge in a finite number of iterations independent of the mesh size, which was
proved for special cases in [26]. The intuition is the following: Information propagates along characteristics. Using a system-
atic alternating ordering strategy, all directions of characteristics can be divided into a finite number of groups and each
group is covered simultaneously by one of the orderings. Moreover, any characteristics can be covered by a finite number
of orderings [26]. With an appropriate upwind scheme that enforces the causality of the underlying partial differential equa-
tion, a Gauss–Seidel iteration propagates correct information in each updating along characteristics whose directions agree
with the orderings.

After outlining the theory and the numerical algorithm, we conduct a series of numerical experiments, where numerical
solutions are compared with analytical solutions for model problems. A significant improvement in accuracy is observed in
comparison with FSM applied directly to the original eikonal equation. Finally, we apply our method to compute traveltime
tables for the benchmark Marmousi model.

2. Factored eikonal equation

A fundamental property of Eq. (1) is that scaling slowness S by a constant corresponds to scaling traveltime T by the same
constant. This property was used in seismic reflection imaging in the method of common-reflection-point scans [2,1].

Let us consider a factored decomposition

SðxÞ ¼ S0ðxÞaðxÞ; ð2Þ
TðxÞ ¼ T0ðxÞsðxÞ ð3Þ

and assume that

jrT0j2 ¼ S2
0ðxÞ: ð4Þ

If both T0 and S0 are known (either from an analytical solution or from a previous numerical computation), one can pose the
problem of a numerical evaluation of the correction sðxÞ on a computational grid with appropriate boundary conditions (see
Remark 1 in the next section for assigning boundary conditions for s). The function substitutions transform Eq. (1) to the
factored eikonal equation

T2
0ðxÞ jrsj2 þ 2T0ðxÞsðxÞrT0 � rsþ ½s2ðxÞ � a2ðxÞ�S2

0ðxÞ ¼ 0: ð5Þ

When aðxÞ is a constant, the solution of Eq. (5) is trivial. When aðxÞ is not a constant but slowly varying, the hope is that
accuracy of evaluating TðxÞ from solving the factored eikonal equation can be greatly improved compared to a direct numer-
ical solution of the original eikonal Eq. (1). One scenario is that point source singularities in the original solution TðxÞ are well
captured by T0ðxÞ. So the correction sðxÞ is a smooth function in a neighborhood of the point sources. For example, when
computing the traveltime for a point source the solution is singular at the source. Special treatment, such as using local grid
refinement near the source, has to be implemented in order to achieve high order accuracy for the numerical solution to the
eikonal equation [13]. However, locally the singularity of the solution to a regular eikonal equation (assuming SðxÞ is smooth
and strictly positive) at a point source is the same as the singularity of the distance function to that point source up to a
smooth modification. Numerical tests in Section 4 show that the numerical solution based on the factored eikonal equation
can be significantly more accurate than the numerical solution computed directly from the original eikonal equation. Also
note that although rT0 does not exist at the source point, it is well-defined away from the source point. It provides good
approximation of all ray directions near the point source. This is crucial for computing accurate solutions away from the
point source, which cannot be approximated easily on a discrete mesh.

When taking S0ðxÞ ¼ 1; T0ðxÞ is the distance function. In the case of simple domains and boundary conditions, the distance
can be evaluated analytically. For example, the distance from a point source at x0 is T0ðxÞ ¼ jx� x0j, which transforms Eq. (5)
to

jx� x0j2 jrsj2 þ 2sðxÞ ðx� x0Þ � rsþ s2ðxÞ � S2ðxÞ ¼ 0: ð6Þ

A numerical solution of Eq. (6) was investigated previously in geophysical applications [12,23]. Simple analytical solutions
exist for several other particular cases of slowness distributions such as a constant gradient of the slowness squared, a con-
stant gradient of the velocity (inverse slowness), etc. [5].

Remark. In general T may have other singularities, e.g., due to the intersections of different characteristics in addition to
point singularities at source points. Hence s may also have singularities away from sources. In practice it is impossible to
know the exact locations of these singularities without knowing the exact solution. However, for numerical computation
(especially if the scheme is upwind), singularities caused by the intersections of different characteristics are less damaging or
polluting than point singularities at source points from where characteristics emanate. In principle we only need to choose a
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