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a b s t r a c t

This article describes a one-dimensional numerical model of a shallow-water flume with
an in-built piston paddle moving boundary wavemaker. The model is based on a set of
enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking
is described approximately, by locally switching to the nonlinear shallow water equations
when a critical wave steepness is reached. The moving shoreline is calculated as part of the
solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on
the paddle face and Eulerian away from the paddle. The governing equations are, however,
evolved on a fixed mapped grid, and the newly calculated solution is transformed back
onto the moving grid via a domain mapping technique. Validation test results are com-
pared against analytical solutions, confirming correct discretisation of the governing equa-
tions, wave generation via the numerical paddle, and movement of the wet/dry front.
Simulations are presented that reproduce laboratory experiments of wave runup on a
plane beach and wave overtopping of a laboratory seawall, involving solitary waves and
compact wave groups. In practice, the numerical model is suitable for simulating the prop-
agation of weakly dispersive waves and can additionally model any associated inundation,
overtopping or inland flooding within the same simulation.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Numerical models based on Boussinesq-type equations are increasingly popular operational predictive tools in coastal
engineering. These essentially two-dimensional models avoid free surface boundary issues by explicitly eliminating the ver-
tical coordinate, yet retaining some vertical flow structure. Nowadays Boussinesq-type models are being applied to relatively
large scale coastal problems (see for example [9,21]). It should be noted that there are other approaches used in practice
based on non-hydrostatic shallow flow solvers (see [31,37]).

The classical Boussinesq equations derived by Peregrine [27] were limited to weakly nonlinear and weakly dispersive
waves and assumed O(e) = O(l2), whereby nonlinearity e represents the ratio of wave amplitude to depth, and dispersion
l is the ratio of depth to wavelength. Since 1967, there have been considerable attempts at extending the applicability of
Boussinesq equations both onshore and offshore. Comprehensive reviews of the earlier development of the field, including
derivations, can be found in Dingemans [7] and Madsen and Schäffer [23]. Of the myriads of candidates, the enhanced equa-
tion set by Madsen and Sørensen [24] is O(e,l2) accurate, yet has improved dispersion properties thanks to a mathematical
manipulation of the dispersive terms. The incorporation of a Padé approximant of the linear dispersion relation into the
momentum equations, as suggested by Madsen and Sørensen [24], results in equations suitable for water depth as deep
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as l = 0.5 (approximately equivalent to kh = 3, with k representing the wavenumber and h is the still water depth). The ver-
tical profile in this extended deeper region is not properly modelled, due to the underlying assumption of the quadratic ver-
tical variation of the horizontal velocity, yet the wave propagation in the extended region is captured with reasonable
accuracy. Another widely used equation set was derived by Nwogu [25], and possesses equivalent dispersion properties.
Nwogu’s equations are formulated in terms of the surface elevation and horizontal velocity at a specific depth chosen to min-
imise wave propagation errors from linear theory. Further extensions to the validity of Boussinesq-type equations have been
achieved by deriving fully nonlinear equations, whereby O(e) = 1 is assumed, as well as deriving higher order equations
which retain O(l4) and equivalent terms (see for example [35,10,1,22]). The emphasis in much of this work is to extend
the range of applicability of Boussinesq models into deeper water. In contrast, the present paper seeks to extend the appli-
cability of a simple Boussinesq model to zero depth.

Boussinesq-type equations cannot model wave breaking, unless they are modified to account for the associated energy
dissipation. The most common breaking treatments in the Boussinesq framework are the surface roller concept (see [29])
or the inclusion of artificial viscosity in the momentum equation (see [36,19]). These have been successful and facilitated
the application of solvers to regions further inshore into the surf zone, but at the cost of requiring tunable parameters.
On the other hand, the nonlinear shallow water equations are appropriate for modelling broken waves in the surf zone. Dis-
sipation of energy is captured physically correctly (see textbooks on shallow water shock conditions, for example Section 2.7
in Johnson [18]). Due to the lack of frequency dispersion in the nonlinear shallow water equations, any waveform modelled
by these equations has a tendency to shock up to produce bores or hydraulic jumps, even on a horizontal bottom. For this
reason the equations cannot be used pre-breaking, as they would lead to incorrect and premature breaking.

The present paper describes a hybrid numerical model based on the Boussinesq equations derived by Madsen and
Sørensen [24] pre-breaking and the nonlinear shallow water equations post-breaking. In this way the appropriate governing
equations are applied at all stages as the wave propagates from intermediate to shallow water. Our hybrid model builds
upon work of Borthwick et al. [4]. Recently there have been similar hybrid models proposed by Tonelli and Petti [32] and
Bonneton et al. [3]. Although the chosen set of Boussinesq equations contains less of the physics and is relatively unsophis-
ticated compared to the newer derivations (see above), it has been selected for its simplicity (small number of low order
terms) and relative ease for numerical computation. In our model, the breaking criterion, which triggers a local switch from
the Boussinesq to the nonlinear shallow water equations, is based on local wave steepness. An appropriate shock capturing
numerical scheme is applied to the nonlinear shallow water equations in order to capture the propagating bores. A well-
established Godunov-type finite volume method, with data reconstruction, is used, following Hu et al. [13], Hubbard and
Dodd [14], and Liang and Borthwick [20] among others. Such methods additionally allow for natural treatment of the moving
shoreline. This is computed as part of the solution, so there is no need for any tracking of the wet/dry front. The model can
thus deal with multiple shorelines and splitting of the water mass, as can occur during an overtopping event. The Boussinesq
equations are solved using finite differences, as smooth solutions are expected pre-breaking.

A novel feature of the present numerical model is the inclusion of a full model for a piston paddle wavemaker. It allows for
complete simulations of shallow water laboratory experiments, including the wave generation process. The problem of the
time-varying domain size, due to the paddle movement, is overcome by implementing a domain transformation, so that cal-
culations are performed in a fixed domain. This horizontal transformation bears resemblance to a r-transformation used in
the vertical coordinate in three-dimensional free surface flow problems (as an example see [33]).

The paper is structured as follows. Section 2 outlines the governing equations of the hybrid model and how the piston
paddle is modelled as a moving boundary. The treatment of wave breaking is also discussed. Section 3 describes the numer-
ical methods used to solve the governing equations, the wetting and drying algorithm, and the boundary conditions. Special
attention is given to the moving grid adjacent to the paddle. The model is validated against analytical solutions and exper-
imental measurements in Sections 4 and 5. In Section 4.1 an exact numerical solution for solitary waves in the present Bous-
sinesq equations is derived, together with the relation between the solitary wave amplitude and celerity.

2. Governing equations

The hybrid model uses two sets of governing equations. The enhanced Boussinesq equations derived by Madsen and
Sørensen [24] are used pre-breaking and the nonlinear shallow water equations post-breaking. A stage-discharge (g,q) for-
mulation is adopted for both equation sets, where g denotes the water surface level above a prescribed horizontal datum and

Fig. 1. Definition sketch.
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