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a b s t r a c t

One of the main challenges in computational simulations of gas detonation propagation is
that negative density or negative pressure may emerge during the time evolution, which
will cause blow-ups. Therefore, schemes with provable positivity-preserving of density
and pressure are desired. First order and second order positivity-preserving schemes were
well studied, e.g., [6,10]. For high order discontinuous Galerkin (DG) method, even though
the characteristicwise TVB limiter in [1,2] can kill oscillations, it is not sufficient to main-
tain the positivity. A simple solution for arbitrarily high order positivity-preserving
schemes solving Euler equations was proposed recently in [22]. In this paper, we first dis-
cuss an extension of the technique in [22–24] to design arbitrarily high order positivity-
preserving DG schemes for reactive Euler equations. We then present a simpler and more
robust implementation of the positivity-preserving limiter than the one in [22]. Numerical
tests, including very demanding examples in gaseous detonations, indicate that the third
order DG scheme with the new positivity-preserving limiter produces satisfying results
even without the TVB limiter.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Gas detonation is a supersonic flow phenomenon that consists of a precursor shock igniting a combustible mixture gas,
with a thin reaction zone behind the shock. Although detonation has been studied for many years, it remains an active area
of research in both theoretical studies and numerical simulations due to its practical importance. To study the gaseous
detonation numerically, the governing equations could be chosen as the Euler equations describing inviscid compressible
flow with the chemical reaction added. There are many difficulties in designing stable numerical schemes solving a general
hyperbolic system with source terms accurately. For example, the width of reaction zone attached to the shock might be very
narrow, see [3], and the source term might induce stiffness, see [9].

In this paper, we focus on how to render numerical schemes stable for gaseous detonation simulation. In practice, it is
quite often to encounter situations in which the density or pressure of the numerical solutions becomes negative. For
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instance, highly energetic flows may contain regions with a dominant kinetic energy, and a relatively small internal energy
which is easy to become negative in the simulation. Another example is the computational simulation of gas detonation
propagation through different geometries. The shock diffraction may result in very low density and pressure. Under such
conditions, it has been observed that numerical schemes may produce negative density or pressure, even for non-reactive
gas flows, which can lead to blow-ups. This phenomenon tends to be amplified by the chemical activity. Crude replacement
of negative values by positive ones not only destroys local and global conservation, but also often does not cure the insta-
bility. Therefore, it is strongly desirable to design schemes with a provable positivity-preserving property. Moreover, a con-
servative positivity-preserving scheme can be easily proved to be L1-stable.

First order and second order positivity-preserving schemes were well studied in the literature [6,10]. So we are mainly
interested in high order positivity-preserving schemes. On the one hand, low order schemes have been used in the simula-
tion of detonation waves [12,13], but numerical results have some deviation from the experimental results. On the other
hand, some high order schemes have been developed in recent years [5,4,16,19,20]. Successful high order numerical schemes
for hyperbolic conservation laws, for example, the Runge–Kutta discontinuous Galerkin (RKDG) method in [1,2], the essen-
tially non-oscillatory (ENO) finite volume and finite difference schemes in [7,18], and the weighted ENO (WENO) finite vol-
ume and finite difference schemes in [11,8], do not automatically satisfy a strict positivity-preserving property. In fact, they
may all fail for very demanding low density or low pressure test cases. Special treatments for different schemes may lead to
positivity-preserving and conservation, but it is very difficult to simultaneously also maintain high order accuracy for
smooth solutions with such treatments. Constructing high order schemes which automatically preserve the positivity of
density and pressure is highly nontrivial. In [22,23], two of the authors proposed an arbitrarily high order positivity-preserv-
ing Runge–Kutta discontinuous Galerkin method for compressible Euler equations, which were extensions and applications
of [21,15]. The main idea is to find some straightforward sufficient condition for the DG method of any spatial order of accu-
racy with first order Euler forward time discretization to keep positivity. A simple limiter which is easy and inexpensive to
implement will enforce the sufficient condition without destroying conservation and accuracy. Strong stability preserving
(SSP) high order Runge–Kutta or multi-step methods [18,17] will still keep the positivity since they are convex combinations
of Euler forward. With this limiter, high order RKDG methods will be positivity-preserving of density and pressure during the
time evolution.

We will show an extension of this method to Euler system with an Arrhenius form of chemical reaction source term and
an additional equation for the evolution of the reaction rate, which are typical governing equations for modeling the gaseous
detonation. Besides density and pressure, our scheme can also maintain the positivity of the reaction rate, which is crucial to
the stability of schemes in this model. We also propose a more robust implementation of the positivity-preserving limiter.
The DG scheme with this new positivity-preserving limiter is stable even for very strong shocks without the need of addi-
tional TVB limiters. Extensive numerical tests of the third order DG method are reported to demonstrate the effectiveness of
our scheme.

2. Positivity-preserving high order discontinuous Galerkin method for two-dimensional reactive Euler equations

2.1. Preliminaries

We consider the dimensionless two-dimensional compressible Euler equations with a source term representing chemical
reactions for the ideal gas,
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where q is the heat release of reaction, c is the specific heat ratio and Y denotes the reactant mass fraction. The source term is
assumed to be in an Arrhenius form

x ¼ �eKqYe�
eT=T ;

where T ¼ p
q is the temperature, eT is the activation temperature and eK is a constant. The eigenvalues of the Jacobian f0(w) are

u � c, u, u, u, u + c and the eigenvalues of the Jacobian g0(w) are v � c, v, v, v, v + c, where c ¼
ffiffiffiffiffiffi
c p

q

q
.

We define the set of admissible states by
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