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reported commercialization is still limited due to their bundle and layer forming behavior. Function-
alization of CNTs and graphene is essential for achieving their outstanding mechanical, electrical and
biological functions and enhancing their dispersion in polymer matrices. A considerable portion of the
recent publications on CNTs and graphene have focused on enhancing their dispersion and solubilization
using covalent and non-covalent functionalization methods. This review article collectively introduces
a variety of reactions (e.g. click chemistry, radical polymerization, electrochemical polymerization, den-
dritic polymers, block copolymers, etc.) for functionalization of CNTs and graphene and fabrication of
their polymer nanocomposites. A critical comparison between CNTs and graphene has focused on the
significance of different functionalization approaches on their composite properties. In particular, the
mechanical, electrical, and thermal behaviors of functionalized nanomaterials as well as their importance
in the preparation of advanced hybrid materials for structures, solar cells, fuel cells, supercapacitors, drug
delivery, etc. have been discussed thoroughly.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

One of the great achievements of science is the development
of techniques which enable us to understand matter and allow
us to modify its atomic structure. The modification of different
materials and their surfaces at the nano scale has been exploited
in recent decades, especially by nano chemists and technologists.
The synthesis of carbon nanomaterials (CNMs) and alteration of
their surfaces provides an opportunity to bolster scientific efforts
in order to create a more resourceful world community capable of
confronting its challenges.

Functionalized carbon nanomaterials have unlocked an array
of applications across a wide spectrum of fields. Among CNMs,
carbon nanotubes (CNTs) and graphene have many superior prop-
erties such as low-weight, very high aspect ratio, high electrical
conductivity, and extraordinary mechanical, optical, and thermal
properties [1-4].

The advantages of CNMs are reflected in the emergence of these
materials over the past decade for use in a variety of innovative
applications. A screening of the Scopus database in March 2015

was used to find publications containing the words “graphene” and
“CNT” and reveals a growing interest in the scientific community
for these materials (Fig. 1). The continuous increase in the number
of publications containing word “graphene” shows its stature and
versatility in the world of material science. Over the past five years,
the total numbers of publications focusing on graphene vs. CNTs are
approximately equal, though in last two years graphene has been
studied more extensively.

The application of carbon nanomaterials to various fields has
been assisted by functionalization of their surfaces and the impor-
tance of modified nano surfaces is well reflected in scientific work of
last decade. The unparalled physiochemical features of these func-
tionalized nanomaterials have been exploited for energy [4], cancer
treatment [5-8], antiviral drug development [9], drug transporta-
tion in biological systems [10-15], biotechnological applications
[16,17] and aerospace [18,19]. In addition, theoretical efforts have
been made to analyze and optimize functionalization [20,21].
Non-functionalized carbon nanomaterials possess some drawbacks
including the tendency to form stable aggregates or bundles due
to very strong intermolecular interactions such as van der Waals
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