

Progress in Polymer Science

journal homepage: www.elsevier.com/locate/ppolysci

Rheology and applications of highly filled polymers: A review of current understanding

Martha Margarita Rueda^{a,b}, Marie-Camille Auscher^{a,c}, René Fulchiron^a, Thomas Périé^c, Grégory Martin^b, Philippe Sonntag^b, Philippe Cassagnau^{a,*}

^a University of Lyon 1, CNRS, Laboratory of Polymer Materials Engineering (IMP - UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France

^b Hutchinson Research Center, Rue Gustave Nourry - B.P. 31, 45120, Chalette sur Loing, France

^c Saint-Gobain CREE, Grains et Poudres, 550 Avenue Alphonse Jauffret, BP 20224, 84306 Cavaillon, France

ARTICLE INFO

Article history: Available online 15 December 2016

Keywords: Highly filled polymers Concentrated suspensions Rheology Processing Mixing Fillers

ABSTRACT

This paper reviews current knowledge about the rheology and applications of highly concentrated molten polymers, focusing on hard particles with sizes ranging from several 100 s nm to a few microns. Understanding the rheological properties should assist the formulation and processing of such polymeric materials. The main factors affecting the rheological behavior of these composites are discussed, such as size distribution, nature and shape of the particles, interactions, maximum packing fraction and matrix viscosity. The matrix viscosity is a key parameter that has to be optimized to be low enough to enable the material processing and high enough to improve the dispersion. The size polydispersity of the fillers facilitates higher filling levels and decreases the melt mixture viscosity for a given filler content. The different types of interactions (viz. particle-particle, particle-matrix) are described to interpret the phenomena arising during processing better. On the other hand, mixing is of particular importance to reach high-quality dispersion and distribution of the particles in the matrix in order to obtain a homogenous mixture and desirable properties. The mixing methods and tools to characterize the degree of mixing are reviewed. The use of organic dispersants is generally necessary to improve and control the dispersion degree and flow properties. Mathematical models relating the viscosity as a function of the filler content for unimodal and bimodal highly filled suspensions are summarized. Constraints and flow instabilities often lead to non-linear rheological behavior such as wall slip, particle-binder segregation, swelling and surface instabilities phenomena; these are discussed. Finally, the latest applications for highly filled systems (such as solid propellants, flame retardancy, magnetic materials, ceramic materials, batteries, etc.) are presented as a source of inspiration for industrial improvements.

© 2016 Elsevier B.V. All rights reserved.

Contents

 Structural description of fillers	24		
2.1. Particle geometry. 2.2. Maximum packing fraction (ϕ_m) and percolation threshold (ϕ_c) . 2.3. Particle size distribution	25		
2.2. Maximum packing fraction (ϕ_m) and percolation threshold (ϕ_c) . 2.3. Particle size distribution	25		
2.3. Particle size distribution	27		
	29		
2.4. Interaction forces	30		
Mixing process			
3.1. Coupling agents	33		
3.2. Analysis tools	34		
3.3. Dispersion: important factors	35		
4. Rheological behavior: major factors	36		

http://dx.doi.org/10.1016/j.progpolymsci.2016.12.007 0079-6700/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author. *E-mail address*: philippe.cassagnau@univ-lyon1.fr (P. Cassagnau).

	4.1.	Mathen	natical models for concentrated suspensions	37
	4.2. Mathematical models of HF molten polymers			
5.	From linear to non-linear rheology			
	5.1.	Linear r	heology	
	5.2.	Non-lin	near rheology	
		5.2.1.	Particle migration	
		5.2.2.	Particle orientation	
		5.2.3.	Wall slip	
		5.2.4.	Extrudate distortions	45
		5.2.5.	Swell	46
6.	Applic	cations		47
7.	7. Conclusions			
	Refere	ences		

Nomenclature

AIN	Aluminium nitride
BN	Boron nitride
BSE	Back-scattered electrons
CB	Carbon black
CIM	Ceramic injection molding
CNF	Carbon nanofibers
CNT	Carbon nanotubes
CTE	Coeffcient of thermal expansion
EDX	Energy dispersive X-ray
EVA	Ethylene-vinyl acetate block copolymer
GRT	Ground rubber type
hBN	Hexagonal boron nitride
HDPE	High density polyethylene
HF	Highly filled
HP	Hot press molding
HPIM	High pressure injection molding
HTPB	Hydroxyl terminated polybutadiene
iPP	Isotactic polypropylene
KCl	Potassium chloride
LDPE	Low-density polyethylene
LLDPE	Linear low density polyethylene
LPIM	Low pressure injection molding
LTEG	Low temperature expandable graphite
LVR	Linear viscoelastic region
MI	Mixing index
MIM	Metal injection molding
MR	Magnetic resonance
OMMT	Organically modified montmorillonite
PBAN	Polybutadiene acrylonitrile
PBT	Polybutylene terephthalate
PDMS	Polydimethylsiloxane
PEG	Polyethylene glycol
PIB	Polyisobutene
PIM	Powder injection molding
PIV	Particle image velocimetry
PM	Particle migration
PMMA	Polymethyl methacrylate
PP	Polypropylene
PS	Polystyrene
PSD	Particle size distribution
PVA	Poly(Vinyl alcohol)
PVDF	Polyvinylidene fluoride
SEM	Scanning electron microscopy

TEM Transmission electron microscopy UHMWPE Ultra-high-molecular-weight polyethylene VdW Van der waals Symbols in Arabic letters Hamaker constant [-] А aspect ratio equal to d_{max}/d_{min} [-] Ar crowding factor [-] С D diameter of the particle [m] Di inter-particle spacing parameter [m] Đ particle mean diameter [m] Diameter of the depletent particle D_{dep} Dro rotary diffusivity [s - 1] D_x the x-th moment of the particle size distribution [-] median diameter of the particle size distribution [m] d₅₀ particle longest characteristic distance [m] d_{max} particle smallest characteristic distance [m] d_{min} f_i G' number fraction of the i-th component [-] storage modulus [Pa] *G*" loss modulus [Pa]h: minimum separation between particles [m] $H(\phi)$ unimodal concentration function, Stiffening function [–] k_b Bolztmann constant [-] function of the fraction of small particles in a b_ik_{ij} dispersed system [-] length of the particle [m] L molecular weight [kg/mol] M_{W} N_1 first normal stress difference [Pa] second normal stress difference [Pa] N_2 power law or Ostwald de Waele index [-] n_b Peclet number = $\dot{\gamma}/D_r$ [-] Ре aspect ratio according to the axis of symmetry [-]р standard deviation [u] S maximum variance for a completely segregated sys- S_0 tem [u] Т temperature [K] U_{dep}

- depletion potential []] repulsive electrostatic potential [J]
- U_r^{el} U_r^{s} repulsive steric potential [J]
- wall slip velocity [m.s-1] U_{s}
- total interparticle potential []] UT
- attractive Van der Waals potential [J]
- U_{VdW}

Download English Version:

https://daneshyari.com/en/article/5207911

Download Persian Version:

https://daneshyari.com/article/5207911

Daneshyari.com