Contents lists available at ScienceDirect

Progress in Polymer Science

journal homepage: www.elsevier.com/locate/ppolysci

Increasing the performance of dielectric elastomer actuators: A review from the materials perspective

L.J. Romasanta, M.A. Lopez-Manchado, R. Verdejo*

Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain

ARTICLE INFO

Article history: Available online 2 September 2015

Keywords: Dielectric elastomers Actuators Artificial muscle Dielectric permittivity

ABSTRACT

Electro-active polymers (EAPs) are emerging as feasible materials to mimic muscle-like actuation. Among EAPs, dielectric elastomer (DE) devices are soft or flexible capacitors, composed of a thin elastomeric membrane sandwiched between two compliant electrodes, that are able to transduce electrical to mechanical energy, actuators, and vice versa, generators. Initial studies concentrated mainly on dielectric elastomer actuators (DEAs) and identified the electro-mechanical principles and material requirements for an optimal performance. Those requirements include the need for polymers with high dielectric permittivity and stretchability and low dielectric loss and viscoelastic damping. Hence, attaining elastomeric materials with those features is the focus of current research developments. This review provides a systematic overview of such research, highlighting the advances, challenges and future applications of DEAs.

© 2015 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	uction				
2.	Electr	o-active j	polymers (EAPs)			
	2.1.	Ionic EA	Ps			
	2.2.	Electron	nic EAPs			
3.	Electro-mechanical transduction in dielectric elastomers (DEs)					
	3.1.	1. Working principles and equations of DE generators (DEGs)				
	3.2.	Working	g principles and equations of DE actuators			
4.	Elasto	meric ma	trices for DEA devices			
5.	Methods to enhance the actuation performance of DEA devices					
	5.1. Reducing DE film thickness					
	5.2.	.2. Reducing DE mechanical stiffness				
	5.3.	Increasi	ng DE permittivity			
		5.3.1.	Chemical modifications of the elastomer backbone			
		5.3.2.	Elastomer composites			
		5.3.3.	Elastomer blends			
	5.4.	Develop	ing highly compliant electrodes			

* Corresponding author. Tel.: +34 91 258 7633; fax: +34 91 564 4853. *E-mail address:* rverdejo@ictp.csic.es (R. Verdejo).

http://dx.doi.org/10.1016/j.progpolymsci.2015.08.002 0079-6700/© 2015 Elsevier Ltd. All rights reserved.

6.	Applications of DEAs	.206
7.	Conclusions and outlook	.207
	Acknowledgement	.207
	References	207

Nomenclature

Α	Area
С	Capacitance
е	Energy density
Ε	Electric field or nominal electric field
M_{w}	Molecular weight
р	Electrostatic pressure
$tan(\delta)$	Dielectric loss factor or loss tangent
T _c	Curie temperature
U	Electrostatic energy
V	Voltage
Y	Young's modulus
Z	Film thickness
63	Vacuum permittivity
с С	Dielectric permittivity
د د	Real part of the complex dielectric permit-
U	tivity, dielectric permittivity
λ	Pre-stretch ratio
BN	Boron nitride
BR	Butadiene rubber
BT	Barium titanate BaTi Ω_2
CB	Carbon black
ССТО	Calcium conner titanate CaCu ₂ Ti ₄ O ₁₂
CNTs	Carbon nanotubes
CPs	Conducting polymers
CR	Chloroprene rubber
CuPc	Copper-phthalocyanine
DRSA	Dodecyl benzene sulfonic acid
DE	Dielectric elastomer
DFAs	Dielectric elastomer actuators
DECs	Dielectric elastomer generators
DOP	Dioctyl phthalate
FADe	Electro-active polymers
ECEs	Electrostrictive graft elastomers
EGES	Ethylene, propylene rubber
ETAC	Ethyltriacetowysilano
EIAS	Ethylene vipyl acetate
EVA	Europhica graphone shoots
LUNDD	Functionalised graphene sheets
HINDK	hydrogenated acrytointine butadiene rub-
	Del Uwaarbraachod achuurathaac
	Polyisobulyiene-co-isopiene
IPGS	Ionic polymer metal compositor
IPIVICS	Ionic polymer-metal composites
IPN	Interpenetrating polymer network
LUES	Liquid-Crystal elastomers
LDPE	Low density polyethylene
IVIVVCNT	s wuuuwan carbon nanotubes
INRK	Acrylonitrile Dutadiene rubber

NR	Natural rubber	
PANI	Polyaniline	
PDA	Polydopamine	
PDMS	Poly(dimethylsiloxane)	
PHT	Poly(3-hexylthiophene)	
PMMA	Poly(methylmethacrylate)	
PMN-PT	Lead magnesium niobate-lead titanate	ž
PSF	Polysulfone	
PTFE	Poly(tetrafluoroethylene)	
P(TrFE)	Poly(trifluoroethylene)	
PU	Polyurethane	
PVDF	Poly(vinylidene fluoride)	
P(VDF-T	rFE) Poly(vinylidene fluor	ride-
	trifluoroethylene)	
PZT	Lead zirconate titanate	
SBR	Styrene-butadiene rubber	
SEBS	Styrene-ethylene-butadiene-styrene	
	rubber	
SEBS-g-N	MA Styrene-ethylene-butylene-styrene	-
	grafted maleic anhydride	
SWCNTs	Single wall carbon nanotubes	
TEOS	Tetraethoxysilane	

1. Introduction

Electro-active polymers (EAPs) that respond to an electrical field by changing their shape have the potential to mimic muscle-like behaviour enabling the development of lightweight, energy efficient and silent actuators, motors and force and strain sensors [1,2]. Among the different EAPs, soft dielectric elastomers (DEs) have attracted much interest in recent years due to their outstanding deformation strains, in some cases greater than 100%. Such interest has not been restricted to the academic world and a number of enterprises [3–5] are already commercialising devices based on this technology.

The first investigations on the effect of electrical field on solids go back to the late 18th century when Italian scientist Alessandro Volta mentioned in a letter [6] that researcher Felice Fontana had observed volume changes in Leyden jars (the first electrical capacitors) [7,8]. Subsequent work on a pre-stretched natural rubber band by Willem Röntgen [9], best known for the discovery of X-rays that earned him the Nobel prize in 1901, showed length changes of several centimetres. Since then, further isolated work can be found on the strain response of dielectric materials to applied fields. However, it was not until 2000 when researchers from Stanford Research Institute reported for the first time large strains in dielectric elastomer in a paper published in *Science* [10]. Since that pivotal work, DEs are recognised to provide the best combination of electrical Download English Version:

https://daneshyari.com/en/article/5207971

Download Persian Version:

https://daneshyari.com/article/5207971

Daneshyari.com