ARTICLE IN PRESS

Progress in Polymer Science xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Progress in Polymer Science

journal homepage: www.elsevier.com/locate/ppolysci

The strength of multi-scale modeling to unveil the complexity of radical polymerization

Dagmar R. D'hooge^{a,b,*}, Paul H.M. Van Steenberge^a, Marie-Françoise Reyniers^a, Guy B. Marin^a

^a Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, Zwijnaarde, B-9052 Gent, Belgium
^b Department of Textiles, Ghent University, Technologiepark 907, Zwijnaarde, B-9052 Gent, Belgium

ARTICLE INFO

Article history: Received 7 June 2015 Received in revised form 17 March 2016 Accepted 5 April 2016 Available online xxx

Keywords: Controlled radical polymerization Free radical polymerization Multi-scale modeling Chain length distribution Particle size distribution Ab initio

ABSTRACT

The strength of multi-scale modeling to support the fundamental understanding and design of radical polymerization processes is illustrated, considering both controlled and free radical polymerization (CRP/FRP) in non-dispersed (bulk/solution) and dispersed (suspension/emulsion) media. At the molecular scale, the importance of joint experimental and theoretical studies is highlighted. At the micro-scale, the concept of apparent rate coefficients is elaborated to account for the possible influence of diffusional limitations on the local reaction rates. At the meso-scale, the key characteristics to fundamentally describe the evolution of the particle size distribution are covered and the possible interaction with the micro- and macro-scale is discussed. At the macro-scale, the main mathematical tools to assess the relevance of mixing and temperature gradients are provided. Several examples on CRP and FRP processes are included to showcase the modeling capabilities for each scale, focusing both on laboratory and industrial reactors.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction	. 00	
2.	Modeling at molecular scale: intrinsic rate coefficients and rates 00			
	2.1.	Characteristic intrinsic parameters		
	2.2	Main techniques	.00	
	2.2.			

Abbreviations: ARGET, activators regenerated by electron transfer; ATRP, atom transfer radical polymerization; CLD, chain length distribution; CFD, computational fluid dynamics; CRP, controlled radical polymerization (also known as RDRP); *cmc*, critical micelle concentration; COSMO-RS, conductor-like screening model for realistic solvents; CTA, chain transfer agent; CSTR, continuous stirred tank reactor; DMSO, dimethyl sulfoxide; DPMA, 2,2-dimethoxy-2-phenylacetophenone; DoPAT, 2-(dodecylthiocarbonothioylthio)propanoic acid; DFT, density functional theory; ESR, electron spin resonance; FRP, free radical polymerization; ICAR, initiators for continuous activator regeneration; MMA, methyl methacrylate; LCB, long chain branching; LDPE, low density polyethylene; MDSD, monomer droplet size distribution; MMA, methyl methacrylate; ME₆TREN, tris(dimethylamino) ethyl amine; *n*BuA, n-butyl acrylate; NMP, nitroxide mediated polymerization; PLP, pulsed laser polymerization; PMDETA, N,N',N'',N''-pentamethyldiethylenetriamine; PSD, particle size distribution; PVC, poly(vinyl chloride); RAFT, reversible addition fragmentation chain transfer; RAFT-CLD-T, RAFT-chain length dependent-termination technique; RDRP, reversible deactivation radical polymerization (also known as CRP); SARA, supplementary activator and reducing agent; SCB, short chain branching; SEC, size exclusion chromatography; S2-LEP-OEX, (S)-2-(Ethyl propionate)-(O-ethyl xanthate); TEMPO, 2,2,6,6-tetramethylpiperidinyloxyl; VC, vinyl chloride; VTST, variational transition state theory.

* Corresponding author at: Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, Zwijnaarde, B-9052 Gent, Belgium. *E-mail address*: dagmar.dhooge@ugent.be (D.R. D'hooge).

http://dx.doi.org/10.1016/j.progpolymsci.2016.04.002 0079-6700/© 2016 Elsevier Ltd. All rights reserved.

Please cite this article in press as: D'hooge DR, et al. The strength of multi-scale modeling to unveil the complexity of radical polymerization. Prog Polym Sci (2016), http://dx.doi.org/10.1016/j.progpolymsci.2016.04.002

2

ARTICLE IN PRESS

D.R. D'hooge et al. / Progress in Polymer Science xxx (2016) xxx-xxx

		2.2.1.	Experimental techniques	00		
		2.2.2.	Theoretical techniques	00		
	2.3.	Example	es on the determination of intrinsic rate coefficients	00		
		2.3.1.	Measurement of intrinsic propagation reactivity <i>via</i> pulsed laser polymerization	00		
		2.3.2.	Calculation of reactivity of side reactions <i>via</i> computational chemistry	00		
3.	Mode	ling at mi	cro-scale: apparent rate coefficients and rates	00		
	3.1.	Charact	eristic molecular diffusion parameters	00		
	3.2.	Apparer	nt kinetics	00		
	3.3.	Example	es on the optimization of the polymer microstructure			
		3.3.1	Short chain branching in CRP			
		3.3.2.	Copper-based mediated CRP	00		
		3.3.3	Conolymerization			
		3.3.4.	Miniemulsion CRP	00		
4	Mode	ling at m	eso-scale: particle size distribution	00		
	4.1 Characteristic parameters					
		4.1.1	Nucleation and growth	00		
		4.1.2.	Breakage and coalescence	00		
	4.2.	Populat	ion balances	00		
	4.3.	Example	es on the improvement of colloidal stability	00		
		4.3.1.	Suspension FRP of vinvl chloride	00		
		4.3.2.	Emulsion polymerization of styrene	00		
5.	Mode	ling at ma	acro-scale: concentration and temperature gradients			
	5.1.	Models	and characteristic parameters.	00		
		5.1.1	Phenomenological models			
		5.1.2.	Semi-empirical models			
		5.1.3	Fundamental models: CED calculations	00		
	5.2	Example	s to evaluate imperfect mixing at industrial scale	00		
	0.2.	5.2.1.	Solution FRP of methyl methacrylate	00		
		522	Emulsion ERP of styrene	00		
6	Conch	usions				
	Acknowledgments					
	Refer	ences		00		
	Refer			00		

List of symbols

Roman symbols				
Α	pre-exponential factor for chemical reac-			
	tion, $(m^3 mol^{-1})s^{-1}$			
A_i (<i>i</i> =1, 2) molecule, –				
A_1A_2	encounter pair of molecules A_1 and A_2 , –			
B(V,t)	"birth function" for PSD calculation, m ⁻³ s ⁻¹			
С	molecule, –			
$C_i (i = 1, 2)$	2) adjustable parameter for correlation			
Cu(I)X	ATRP activator, –			
$Cu(II)X_2$	ATRP deactivator, –			
d_p	particle diameter, m			
D(V,t)	"death function" for PSD calculation,			
	$m^{-3} s^{-1}$			
$D_{u/v}$	diameter of particle with volume U/V, m			
D_{Ai}	diffusion coefficient of molecule A_i , m ² s ⁻¹			
$D_{A1,0}$	pre-exponential factor for diffusion coeffi-			
	cient of molecule A_1 , m ² s ⁻¹			
E_A	activation energy, J mol ⁻¹			
g	breakage rate coefficient, s ⁻¹			
g	gravity vector, m s			
G	growth rate of a particle, m ³ s ⁻¹			
h	Planck constant, J s			
i	chain length, –			

i.	sth inflection point in characteristic PIP
ıs	CLD. –
Ь	conventional radical initiator. –
F	volumetric flow rate, m ³ s ⁻¹
F _{A.inst}	instantaneous average copolymer composi-
	tion for A monomer units, –
f_A	molar fraction of monomer A in monomer
	feed, –
k	rate coefficient, (m ³ mol ⁻¹) s ⁻¹
k_B	Boltzmann constant, J K ⁻¹
k′	coalescence coefficient, m ³ s ⁻¹
Р	dead polymer molecule, –
P'	pressure, Pa
Keq	activation/deactivation equilibrium coeffi-
	cient, (mol m ⁻³ or –)
K _{ij}	hole free volume parameter, m ³ kg ⁻¹ K ⁻¹ or
	K
М	monomer molecule, –
MM_m	monomer molar mass, kg mol ⁻¹
n(V,t)	number density function per volume unit,
	III °
n 	molecularity of the reaction, –
TL N	average number of radicals per particle, –
N _A	Avogadro constant, mol ⁻¹

Please cite this article in press as: D'hooge DR, et al. The strength of multi-scale modeling to unveil the complexity of radical polymerization. Prog Polym Sci (2016), http://dx.doi.org/10.1016/j.progpolymsci.2016.04.002

Download English Version:

https://daneshyari.com/en/article/5207977

Download Persian Version:

https://daneshyari.com/article/5207977

Daneshyari.com