Accepted Manuscript

Title: "Click" reactions in polysaccharide modification

Author: Xiangtao Meng Kevin J. Edgar

PII: S0079-6700(15)00089-1

DOI: http://dx.doi.org/doi:10.1016/j.progpolymsci.\(\overline{2015.07.006}\)

Reference: JPPS 941

To appear in: Progress in Polymer Science

Received date: 13-11-2014 Revised date: 18-5-2015 Accepted date: 17-7-2015

Please reactions cite this article as: Meng X, Edgar KJ, "Click" polysaccharide modification, **Progress** inPolymer Science (2015),http://dx.doi.org/10.1016/j.progpolymsci.2015.07.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

"Click" reactions in polysaccharide modification

Xiangtao Meng^{a,b}, Kevin J. Edgar^{a,b*}kjedgar@vt.edu

^aMacromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA, 24061

^bDepartment of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA, 24061

Tel.: 1 540 231 0674.

Abstract

Polysaccharide chemistry is enjoying accelerating development thanks to advances in synthetic techniques, biochemistry and solvents, which enable polysaccharide materials to be useful in a variety of demanding applications. Among the synthetic advances, click chemistry has reconfigured the realm of polysaccharide modification that previously was dominated by conventional synthetic approaches such as esterification and etherification. "Click" reactions provide mild, modular, and efficient modification pathways, and equally importantly allow us to synthesize derivatives with novel functionality, architecture, and properties, that are otherwise difficult to obtain via conventional methods. Herein, we review application in polysaccharide modification of six groups of click reactions; CuAAC (copper catalyzed alkyne/azide cycloaddition), metal-free [3+2] cycloaddition, Diels-Alder reaction, oxime click, thiol-Michael reaction, and thiol-ene reaction, as well as one click-like reaction that is the subject of our own research, olefin cross-metathesis.

Keywords

Click chemistry; polysaccharide; chemical modification; hydrogel; drug delivery; cross-linking; olefin metathesis

Download English Version:

https://daneshyari.com/en/article/5207983

Download Persian Version:

https://daneshyari.com/article/5207983

<u>Daneshyari.com</u>