Accepted Manuscript

Title: Ductility, toughness and strain recovery in self-healing dual cross-linked nanoparticle networks studied by computer simulations

Author: Balaji V.S. Iyer Victor V. Yashin Matthew J. Hamer Tomasz Kowalewski Krzysztof Matyjaszewski Anna C. Balazs

PII: S0079-6700(14)00079-3

DOI: http://dx.doi.org/doi:10.1016/j.progpolymsci.2014.07.004

Reference: JPPS 881

To appear in: Progress in Polymer Science

Received date: 19-11-2013 Revised date: 10-6-2014 Accepted date: 9-7-2014

Please cite this article as: Iyer BVS, Yashin VV, Hamer MJ, Kowalewski T, Matyjaszewski K, Balazs AC, Ductility, toughness and strain recovery in self-healing dual cross-linked nanoparticle networks studied by computer simulations, *Progress in Polymer Science* (2014), http://dx.doi.org/10.1016/j.progpolymsci.2014.07.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Submitted to the Special Issue on 'Trends in Polymer Nanocomposite Materials'

Review

Ductility, toughness and strain recovery in self-healing dual cross-linked nanoparticle networks studied by computer simulations

Balaji V. S. Iyer, a Victor V. Yashin, Matthew J. Hamer, a

Tomasz Kowalewski, Krzysztof Matyjaszewski and Anna C. Balazs Anna C. Balazs Anna C. Balazs

^aChemical Engineering Department, University of Pittsburgh, Pennsylvania 15261, USA

^bDepartment of Chemistry, Carnegie Mellon University, Pennsylvania 15213, USA

ABSTRACT

One of the challenges in formulating useful nanocomposites is creating materials that are both tough and strong. Here, we review results of computational studies on a new class of nanocomposites that exhibit these desirable properties. The fundamental unit in these materials is a polymer grafted nanoparticle (PGN), which encompasses a rigid core and a corona of end-grafted polymers. We focus on a concentrated solution of these PGNs; the solution is assumed to be a good solvent for the grafted chains, which are in the semi-dilute regime. The free ends of the grafted chains encompass chemically reactive groups. Hence, with the overlap of the coronas on neighboring nanoparticles, the reactive end groups can form labile or more stable ("permanent") bonds, leading to the creation of a "dual crosslinked" network. To predict the mechanical properties of these dual cross-linked PGN networks, we developed a multi-scale model that captures interactions occurring over the range of length and time scales that characterize the performance of the system. Namely, the model integrates the essential structural features of the polymer grafted nanoparticles, the interactions between the overlapping coronas, the kinetics of bond formation and rupture between the reactive end-groups and the response of the entire sample to mechanical deformation. Using this computational approach, we determined the effect of the labile bond

Download English Version:

https://daneshyari.com/en/article/5208070

Download Persian Version:

https://daneshyari.com/article/5208070

<u>Daneshyari.com</u>