Accepted Manuscript

Title: Silk Proteins for Biomedical Applications:

Bioengineering Perspectives

Author: Banani Kundu Nicholas E. Kurland Subia Bano Chinmoy Patra Felix B. Engel Vamsi K. Yadavalli Subhas C.

Kundu

PII: S0079-6700(13)00108-1

DOI: http://dx.doi.org/doi:10.1016/j.progpolymsci.2013.09.002

Reference: JPPS 833

To appear in: Progress in Polymer Science

Received date: 29-6-2012 Revised date: 26-8-2013 Accepted date: 4-9-2013

Please cite this article as: Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC, Silk Proteins for Biomedical Applications: Bioengineering Perspectives, *Progress in Polymer Science* (2013), http://dx.doi.org/10.1016/j.progpolymsci.2013.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Silk proteins for biomedical applications: bioengineering perspectives

Banani Kundu¹, Nicholas E. Kurland², Subia Bano¹, Chinmoy Patra³, Felix B. Engel³, Vamsi K.

Yadavalli²*. Subhas C. Kundu¹*

1 Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India

2 Department of Chemical and Life Science Engineering, Virginia Commonwealth University,

Richmond VA 23284, USA

3 Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute

of Pathology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany

Abstract

Biomaterials of either natural or synthetic origin are used to fabricate implantable devices, as

carriers for bioactive molecules or as substrates to facilitate tissue regeneration. For the design of

medical devices it is fundamental to use materials characterized by non-immunogenicity,

biocompatibility, slow and/or controllable biodegradability, non-toxicity, and structural integrity.

The success of biomaterial-derived biodevices tends to be based on the biomimetic architecture

of the materials. Recently, proteins from natural precursors that are essentially structural and

functional polymers, have gained popularity as biomaterials. The silks produced by silkworms or

spiders are of particular interest as versatile protein polymers. These form the basis for diverse

biomedical applications that exploit their unique biochemical nature, biocompatibility and high

mechanical strength. This review discusses and summarizes the latest advances in the

engineering of silk-based biomaterials, focusing specifically on the fabrication of diverse bio-

mimetic structures such as films, hydrogels, scaffolds, nanofibers and nanoparticles; their

functionalization and potential for biomedical applications.

Keywords: Silk, biomedical applications, films, scaffolds, hydrogels

*Corresponding authors: vyadavalli@vcu.edu (VK Yadavalli);

kundu@hijli.iitkgp.ernet.in (SC Kundu)

1

Download English Version:

https://daneshyari.com/en/article/5208188

Download Persian Version:

https://daneshyari.com/article/5208188

<u>Daneshyari.com</u>