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mentary macromolecular engineering toolbox to the controlled radical polymerization
techniques (CRP). Indeed, all structures formed by CRP are likely to be prone to radical cou-
pling reactions, which multiply the available synthetic possibilities. Basically, the coupling
Keywords: systems can be divided in two main categories. The first one, including the atom transfer
Radical coupling radical coupling (ATRC), silane radical atom abstraction (SRAA) and cobalt-mediated radical
Radical reactions coupling (CMRC), relies on the recombination of macroradicals produced from a dormant
species. The second one, including atom transfer nitroxide radical coupling (ATNRC), single
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electron transfer nitroxide radical coupling (SETNRC), enhanced spin capturing polymeriza-
tion (ESCP) and nitrone/nitroso mediated radical coupling (NMRC), makes use of a radical
scavenger in order to promote the conjugation of the polymer chains. More than a compila-
tion of macromolecular engineering achievements, the present review additionally aims to

Macrocycles emphasize the particularities, synthetic potential and present limitations of each system.
© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Conventional radical polymerization is one of the most
widespread processes for the industrial production of vinyl
polymers. The tolerance of radical species toward numer-
ous functional groups in the monomer and toward protic
solvents such as water account for the success of this ver-
satile and easy to implement technology. Nevertheless, the
occurrence of irreversible bimolecular reactions between
propagating radicals along the polymerization precludes
the formation of well-defined polymers and complex
macromolecular architectures. This severe limitation
was overcome by the development of controlled radical
polymerization (CRP) [1-14]. The latter involves additives
able to temporarily deactivate the radical chains and to
drastically decrease the influence of irreversible termina-
tion reactions, like combination and disproportionation.
All along the process, a large majority of “dormant” chains
are in equilibrium with a very small amount of active ones.
As a consequence, the synthesis of polymers with pre-
dictable molecular weight (MW), narrow molecular weight
distribution (MWD) and various topologies, was made
possible. Among the efficient and exhaustively reviewed
CRP techniques are nitroxide-mediated radical polymer-
ization (NMP) [1-3], atom transfer radical polymerization
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(ATRP) [4-6], radical addition-fragmentation chain
transfer (RAFT) [7,8], degenerative chain transfer polymer-
ization (DT) [9,10] and organometallic-mediated radical
polymerization (OMRP) [11-13].

In spite of the admittedly deleterious impact of termina-
tion reactions on CRP and therewith also on the control of
the polymer structure, new synthetic opportunities arose
from the combination of CRP with radical polymer chain
coupling reactions. (Fig. 1) The present review focuses
on the relevance and practical benefits of this appar-
ently paradoxical association. For example, when applied
to polymers formed by CRP, a quantitative radical cou-
pling reaction leads to well-defined macromolecules with
a twice higher molecular weight. Although the coupling
of a homopolymer appears pointless at first sight, it is
not the case anymore if the precursor is functionalized in
its a-position. In this case, such a “convergent” strategy
constitutes a straightforward route to the preparation of
homotelechelic polymers. (Fig. 1) Moreover, the coupling
reaction of diblocks or gradient type copolymers should
give access to the corresponding symmetrical copolymers.
(Fig. 1) Some might argue that such architectures are
easily available by a “divergent” (co)polymerization strat-
egy using a difunctional initiator. However, copolymers
prepared according to the “convergent” and “divergent”

000000000000
+ 000000000000
08000000C0CCOseee

n

Fig. 1. Schematic representation of synthetic opportunities offered by the radical polymer coupling techniques.
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