
An introduction to Lie group integrators – basics, new
developments and applications

Elena Celledoni, Håkon Marthinsen, Brynjulf Owren ⇑
Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway

a r t i c l e i n f o

Article history:

Keywords:
Lie group integrators
Symplectic methods
Integral preserving methods

a b s t r a c t

We give a short and elementary introduction to Lie group methods. A selection of applica-
tions of Lie group integrators are discussed. Finally, a family of symplectic integrators on
cotangent bundles of Lie groups is presented and the notion of discrete gradient methods
is generalised to Lie groups.
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1. Introduction

The significance of the geometry of differential equations was well understood already in the nineteenth century, and in
the last few decades such aspects have played an increasing role in numerical methods for differential equations. Nowadays,
there is a rich selection of integrators which preserve properties like symplecticity, reversibility, phase volume and first inte-
grals, either exactly or approximately over long times [30]. Differential equations are inherently connected to Lie groups, and
in fact one often sees applications in which the phase space is a Lie group or a manifold with a Lie group action. In the early
nineties, two important papers appeared which used the Lie group structure directly as a building block in the numerical
methods. Crouch and Grossman [22] suggested to advance the numerical solution by computing flows of vector fields in
some Lie algebra. Lewis and Simo [45] wrote an influential paper on Lie group based integrators for Hamiltonian problems,
considering the preservation of symplecticity, momentum and energy. These ideas were developed in a systematic way
throughout the nineties by several authors. In a series of three papers, Munthe-Kaas [54–56] presented what are now known
as the Runge–Kutta–Munthe-Kaas methods. By the turn of the millennium, a survey paper [35] summarised most of what
was known by then about Lie group integrators. More recently a survey paper on structure preservation appeared with part
of it dedicated to Lie group integrators [20].

The purpose of the present paper is three-fold. First, in Section 2 we give an elementary, geometric introduction to the ideas
behind Lie group integrators. Secondly, we present some examples of applications of Lie group integrators in sections 3 and 4.
There are many such examples to choose from, and we give here only a few teasers. These first four sections should be read as a
survey. But in the last two sections, new material is presented. Symplectic Lie group integrators have been known for some
time, derived by Marsden and coauthors [49] by means of variational principles. In Section 5 we consider a group structure
on the cotangent bundle of a Lie group and derive symplectic Lie group integrators using the model for vector fields on man-
ifolds defined by Munthe-Kaas in [56]. In Section 6 we extend the notion of discrete gradient methods as proposed by Gonzalez
[29] to Lie groups, and thereby we obtain a general method for preserving first integrals in differential equations on Lie groups.
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We would also like to briefly mention some of the issues we are not pursuing in this article. One is the important family of
Lie group integrators for problems of linear type, including methods based on the Magnus and Fer expansions. An excellent
review of the history, theory and applications of such integrators can be found in [2]. We will also skip all discussions of
order analysis of Lie group integrators. This is a large area by itself which involves technical tools and mathematical theory
which we do not wish to include in this relatively elementary exposition. There have been several new developments in this
area recently, in particular by Lundervold and Munthe-Kaas, see e.g. [47].

2. Lie group integrators

The simplest consistent method for solving ordinary differential equations is the Euler method. For an initial value prob-
lem of the form

_y ¼ FðyÞ; yð0Þ ¼ y0;

one takes a small time increment h, and approximates yðhÞ by the simple formula

y1 ¼ y0 þ hFðy0Þ;
advancing along the straight line coinciding with the tangent at y0. Another way of thinking about the Euler method is to con-
sider the constant vector field Fy0

ðyÞ :¼ Fðy0Þ obtained by parallel translating the vector Fðy0Þ to all points of phase space. A step
of the Euler method is nothing else than computing the exact h-flow of this simple vector field starting at y0. In Lie group inte-
grators, the same principle is used, but allowing for more advanced vector fields than the constant ones. A Lie group general-
isation of the Euler method is called the Lie–Euler method, and we shall illustrate its use through an example [22].

Example, the Duffing equation. Consider the system in R2

_x ¼ y;

_y ¼ �ax� bx3
;

a P 0; b P 0; ð1Þ

a model used to describe the buckling of an elastic beam. Locally, near a point ðx0; y0Þ we could use the approximate system

_x ¼ y; xð0Þ ¼ x0;

_y ¼ �ðaþ bx2
0Þx; yð0Þ ¼ y0;

ð2Þ

which has the exact solution

�xðtÞ ¼ x0 cos xt þ y0

x
sin xt; �yðtÞ ¼ y0 cos xt �xx0 sin xt; x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bx2

0

q
: ð3Þ

Alternatively, we may consider the local problem

_x ¼ y;

_y ¼ �ax� bx3
0;

having exact solution

�xðtÞ ¼ x0 cos at þ y0
a sin at þ bx3

0
cos at � 1

a2 ;

�yðtÞ ¼ y0 cos at � ax0 sinat � bx3
0

sinat
a

;

a ¼
ffiffiffi
a
p

:

In each of the two cases, one may take x1 ¼ �xðhÞ; y1 ¼ �yðhÞ as the numerical approximation at time t ¼ h. The same procedure
is repeated in subsequent steps. A common framework for discussing these two cases is provided by the use of frames, i.e. a
set of vector fields which at each point is spanning the tangent space. In the first case, the numerical method applies the
frame

X ¼
y

0

� �
¼: y @x; Y ¼

0
x

� �
¼: x @y: ð4Þ

Taking the negative Jacobi–Lie bracket (also called the commutator) between X and Y yields the third element of the standard
basis for the Lie algebra slð2Þ, i.e.

H ¼ �½X;Y� ¼ x @x� y @y; ð5Þ

so that the frame may be augmented to consist of fX;Y;Hg. In the second case, the vector fields E1 ¼ y@x� ax@y and E2 ¼ @y
can be used as a frame, but again we choose to augment these two fields with the commutator E3 ¼ �½E1; E2� ¼ @x to obtain
the Lie algebra of the special Euclidean group SE(2) consisting of translations and rotations in the plane. The situation is illus-
trated in Fig. 1. In the left part, we have considered the constant vector field corresponding to the Duffing vector field eval-
uated at ðx0; y0Þ ¼ ð0:75;0:75Þ, and the exact flow of this constant field is just the usual Euler method, a straight line. In the
right part, we have plotted the vector field defined in (2) with the same ðx0; y0Þ along with its flow (3). The exact flow of (1) is
shown in both plots (thick curve).
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