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research, and it combines biosourced molecules with a cheap and rapid radiative processing
method that avoids any emission of volatile organic compounds. The main classes of natu-
rally occurring molecules and macromolecules such as lipids, amino acids, carbohydrates,
polyenes, etc. are detailed. The way they are used or integrated in photopolymerizable sys-
tems are described in relation to their applications: coatings, biomaterials, biodegradable

gﬁ{,ﬁoggfymmzaﬂon drug delivery systems, microelectronics or optoelectronics. This critical review takes into
Renewable resources account the reactivity of the various compounds as well as their cytotoxicity, biodegrad-
Vegetable oil ability and finally their end uses.
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Abbreviations: 5-CAGA, 5-ring membered cyclic acetalglycerin acrylate; 6-CAGA, 6-ring membered cyclic acetalglycerin acrylate; AEMA, Aminoethyl-
methacrylate; API, Acrylatedpolyisoprene; BMA, n-butyl methacrylate; CCCA, Cyclic carbonate carbamateacrylate; DAAm, N,N-dimethylacrylamide;
DMAc, Dimethylacetamide; DMAP, N,N-dimethylamino pyridine; DMF, Dimethylformamide; DMPA, 2,2-dimethoxy-2-phenylacetophenone; DMSO,
Dimethylsulfoxide; DS, Substitution degree; ECLO, Epoxidized cyclohexene-derivatized linseed oil; ECM, Extracellular matrix; EDC, 1-ethyl-3-(3-
dimethylaminopropyl)-carbodiimidehydrochloride; ENLO, Epoxynorbornene linseed oil; EO, Epoxidized oil; EPI, Epoxypolyisoprene; ESBO, Epoxidized
soybean oil; ESO, Epoxidized sunflower oil; F, Phenylalanine; GCA, Glycerin carbonateacrylate; GMA, Glycidyl methacrylate; HA, Hyaluronic acid;
HBA, Hyperbranched acrylate; HEMA, 2-hydroxyethyl methacrylate; HMPP, 2-hydroxy-2-methylphenyl-1-propanone (Darocur® 1173); hMSC, Human
mesenchymal stem cells; HPN, Hybrid polymer network; I, Isoleucine; iBMA, Isobutyl methacrylate; IEMA, 2-isocyanatoethylmethacrylate; IPN,
Interpenetrating polymer network; K, Lysine; L, Leucine; LbL, Layer by layer; LCST, Low critical solution temperature; LMOGs, Low molecular
weight organogelators; LO, Linseed oil; M, Methionine; MA, Methacrylic anhydride; MAG, Monoacylglycerol (monoglyceride); MDI, Methylene bis(4-
phenylisocyanate); MMA, Methyl methacrylate; NELO, Norbornenylepoxidized linseed oil; NHS, N-hydroxysuccinimide; NIPAAm, N-isopropylacrylamide;
NMA, N-methylolacrylamide; NMP, N-methyl-2-pyrrolidone; NR, Natural rubber; NVP, 1-vinyl-2-pyrrolidinone; PBS, Phosphate buffer solution; PDMS,
Polydimethylsiloxane; PEG, Poly(ethylene glycol); PEGDA, Polyethylene glycol diacrylate; PI, Polyisoprene; PLLA, Poly(L-lactide); PNIPAAm, Poly(N-
isopropylacrylamide); PUR, Polyurethane; RAFT, Reversible addition-fragmentation chain transfer polymerization; SA, Succinic anhydride; SBO, Soybean
oil; SIPN, Semi-interpenetrating polymer network; SMCs, Smooth muscle cells; SolA, Solketalacrylate; T, Threonine; TAG, Triacylglycerol (triglyceride);
TDI, Toluene diisocyanate; TEC, Thiol-ene coupling; TEOS, Tetraethylorthosilicate; TPGDA, Tripropylene glycol diacrylate; V, Valine; VA-086, 2,2'-Azobis|2-
methyl-N-(2-hydroxyethyl)propionamide]; VAPG, Valine-alanine-proline-glycine; W, Tryptophan.
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1. Introduction

The increasing number of research studies devoted
to the development of biosource-based materials reveals
the great potential of renewable raw molecules and their
ability to substitute for petrochemical-based materials.
The construction of biorefineries and the availability of
molecules such as glycerin derived from biodiesel produc-
tion are a great evolution of the chemical industry. Until
now, only a few examples of biosourced polymers have
been available, and the famous polyamide 11 is synthesized
from castor oil, a vegetable oil also used in the prepara-
tion of polyurethanes. In recent years, there has been a real
explosion in the number of studies on the development of
materials derived from biomass. Typical monomers such as
acrylic acid, epichlorohydrin and acrylonitrile can be now
produced from biosourced feedstock. The industrial pro-
duction of “green” polyethylene in Brazil proves that this
is not just a trend but a “mutation” in polymer chemistry.
Moreover, this industrial revolution should enable agricul-
tural revitalization in certain countries, thanks to the added
value of agricultural products.

This mutation, which started one decade ago, must
be followed by a real strategy concerning the economic
constraints of this approach. The best example addresses
the peculiar case of lipids, which are currently used for
human and animal food and have recently been employed
in the production of biodiesel. This continuous growth of
lipochemistry activities will promote competition among
the different end uses of vegetable oils (in some countries,
mainly human nutrition).

Nevertheless, some non-edible oil species may be a non-
competitive alternative to this situation. Other biomass
deposits, such as algae, lignins, celluloses, polysaccharides
and vegetable proteins, are easily affordable precursors
of carbon with unlimited deposits and very easy access

thanks to worldwide production. These carbon sources can
be extracted from some industrial by-products and wastes
(wood, wood pulp, starch, etc.) whose actual valorization
is not secured. Developments based on these by-products
will undoubtedly be of great interest because they are
not competing with raw materials devoted to nutrition.
Biosourced materials are rarely used just after harvest or
extraction and often need preliminary treatments (purifi-
cation, chemical or enzymatic modifications, etc.) to access
reagents usable in the elaboration of polymers and poly-
meric materials. Linseed oil is a rare oil variety that can
be used in its native form, as its polymerization occurs
under oxygen and UV irradiation without any preliminary
modification.

To modify biosourced raw materials to make them
usable as reagents in material production will be the great
challenge for chemical engineering and biotechnologies
during the next decades. Some recent promising results
open the way in the field of vegetable oil modification
(epoxidation) and enzymatic degradation of starch to pro-
duce various monomers (succinic acid, glycolic acid, etc.).

The use and purification of biomass can be satisfying if
environmentally friendly processes limiting the production
of wastes and the emission of volatile organic com-
pounds (V.0.C.) are involved. In the same way, materials
processing should require low temperature and energy-
efficient processes. For instance, UV radiation is a simple
and convenient form of energy and does not require
expensive devices. Thanks to its high output, this special
polymer processing method is enjoying a new expansion
and is applied at the industrial scale for inks, curable
resins and also in various high-added-value products such
as liquid crystal polymers and non linear optics. Lig-
uid resins can be converted into solid resins in a few
tenths of a second, making this process very attractive to
the scientific community for the past three decades. The
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