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bound-preserving remap (constrained interpolation) and transport (advection) of a single
scalar quantity. We present a general optimization framework for the preservation of phys-
ical properties and specialize it to a generic optimization-based remap (OBR) of mass den-
sity. The latter casts remap as a quadratic program whose optimal solution minimizes the

Key Won?s" . . distance to a suitable target quantity, subject to a system of linear inequality constraints.
Constrained interpolation . . . .
Remap The approximation of an exact mass update operator defines the target quantity, which
Quadratic programming proyides the best possiblg accuracy of the new masses without regard to any physical con-
Preservation of local bounds straints such as conservation of mass or local bounds. The latter are enforced by the system
Preservation of linearity of linear inequalities. In so doing, the generic OBR formulation separates accuracy consid-
Optimization-based remap erations from the enforcement of physical properties.

TF&HSPOH We proceed to show how the generic OBR formulation yields the recently introduced
Spherical geometry flux-variable flux-target (FVFT) [1] and mass-variable mass-target (MVMT) [2] formula-

Lat/lon coordinates tions of remap and then follow with a formal examination of their relationship. Using an

intermediate flux-variable mass-target (FVMT) formulation we show the equivalence of
FVFT and MVMT optimal solutions.

To underscore the scope and the versatility of the generic OBR formulation we introduce
the notion of adaptable targets, i.e., target quantities that reflect local solution properties,
extend FVFT and MVMT to remap on the sphere, and use OBR to formulate adaptable, con-
servative and bound-preserving optimization-based transport algorithms for Cartesian and
latitude/longitude coordinate systems. A selection of representative numerical examples
on two-dimensional grids demonstrates the computational properties of our approach.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fundamental physical properties of natural phenomena give rise to the salient analytical properties of their mathematical
models. However, the discretization of these models can cause the loss of key mathematical relationships, potentially leading
to ill-posed discrete equations, the emergence of spurious modes, or physically impossible solutions. Coupled multiphysics
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simulations, where the output from one constituent component provides the input to another component, can further exac-
erbate the loss of structural and qualitative information in the discrete model. There, an unphysical solution from one com-
ponent can cause a cascading breakdown of the subsequent components and compromise the whole simulation.

Thanks to extensive research efforts over the past 20 years it is now well understood that a discrete “vector calculus” set-
ting, i.e., discrete spaces and operators that mimic basic vector calculus properties such as the Poincare lemma, the Gauss
divergence theorem and the Stokes circulation theorem, enables structure-preserving discretizations of a large class of Partial
Differential Equations (PDEs); see [3-7] and the references therein.

However, advances in structure-preserving numerical methods stand in sharp contrast with the limited mathematical
and algorithmic understanding of feature-preserving discretizations, i.e., discretizations that reproduce qualitative prop-
erties of the exact solutions, such as local bounds, maximum principles, and symmetries, to name a few. The root cause
for this imbalance is that such properties emerge from the interplay of function space structures with differential and
boundary operators, i.e., they are model specific, whereas the given functional space structures can be shared by multi-
ple mathematical models. For instance, the same discrete vector calculus setting can support the structure-preserving
discretization of models ranging from pure diffusion to conservation laws, yet the unique qualitative properties of
the models at each extreme, such as the maximum principle and local bounds are not guaranteed to emerge automat-
ically from that setting.

The fluid nature of the qualitative properties makes it difficult to enforce them directly in the discretization process, that
is by relying solely on the mesh structure and the discrete variables. As a rule, this strategy ties together the preservation of
the desired features with geometric conditions on the mesh and/or restrictions on the accuracy. A typical example is the dis-
crete maximum principle (DMP) for the Poisson equation, which requires a monotone, or M-stiffness matrix. To ensure this
property on triangular elements the sum of the two angles opposing each interior edge should be less than 7, and the poly-
nomial degree should be 1 [8-10]. An extension of DMP to more general triangular or quadrilateral meshes requires nonlin-
ear modifications of the governing equations such as the nonlinear stabilized finite element method for the Poisson equation
[11,12], the nonlinear extension of the diamond scheme [13], and the nonlinear finite volume scheme in [14].

High-order maximum-principle satisfying and positivity preserving schemes for conservation laws exist in one dimen-
sion [15], or on rectangular meshes [16,17]. An extension of these schemes even to triangular elements is highly nontrivial
[18]. A similar interdependence between mesh, accuracy and preservation of a physical property exists in many of the slope
and flux limiters in use today. As a result, many of them do not preserve linear functions on irregular meshes [19], which
impacts accuracy and robustness. This interdependence is propagated to any algorithm that employs limiters such as advec-
tion-based remappers in Arbitrary Lagrangian Eulerian (ALE) methods [20].

This paper draws upon and continues our previous efforts to develop an alternative, optimization-based divide-and-conquer
strategy [21-24] for the formulation of stable, accurate and physically consistent discretizations. Specifically, here we focus on
the application of optimization and control ideas to separate stability and accuracy considerations from the enforcement of the
desired physical properties. In a nutshell, given a mathematical model and a list of desirable physical properties, our approach
seeks the corresponding discrete model in the form of a constrained optimization problem in which

o the objective is to minimize the distance, measured in some suitable norm, between the discrete solution and a given
target solution;

e a discrete model that is stable and accurate but is not expected to possess all desired physical properties defines the target
solution;

o the optimization constraints enforce any desired physical properties that are not already present in the target solution.

This strategy offers a number of important theoretical and computational advantages in the formulation of feature-preserving
numerical methods:

o the numerical solution is a global optimal solution from a feasible set defined by the desired physical properties, i.e., it is
always the best possible, with respect to the target, approximate solution that also possesses these physical properties;

o the decoupling of the target definition from the preservation of the physical properties allows one to adapt the numerical
solution to different problems by choosing the most appropriate target definition and objective function for these
problems;

o the enforcement of the desired properties as optimization constraints is impervious to the mesh structure and/or field
representations, thereby enabling feature-preserving methods on arbitrary unstructured meshes, including polygonal
and polyhedral meshes.

The present work applies the optimization-based strategy to the high-order accurate and feature-preserving remap (con-
strained interpolation) and transport (advection) of a single scalar conserved quantity ("mass”). The features that we aim
to preserve through the use of optimization are (a) the conservation of total mass and (b) physically motivated local bounds
on the primitive variable (the density). The remap task arises in Arbitrary Lagrangian-Eulerian (ALE) methods, where high-
order remapping between meshes is critical for the accuracy of the simulation, especially in conjunction with a continuous
rezone approach, which requires remapping at every time step [25,26]. The second task, i.e., the stable, accurate and
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