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Preserving in the discrete realm the underlying geometric, topological, and algebraic
structures at stake in partial differential equations has proven to be a fruitful guiding
principle for numerical methods in a variety of fields such as elasticity, electromagnetism,
or fluid mechanics. However, structure-preserving methods have traditionally used spaces
of piecewise polynomial basis functions for differential forms. Yet, in many problems where
solutions are smoothly varying in space, a spectral numerical treatment is called for. In an
effort to provide structure-preserving numerical tools with spectral accuracy on logically
rectangular grids over periodic or bounded domains, we present a spectral extension of
the discrete exterior calculus (DEC), with resulting computational tools extending well-
known collocation-based spectral methods. Its efficient implementation using fast Fourier
transforms is provided as well.

Wedge product © 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recent years have seen the development of novel discretizations for a wide variety of systems of partial differential
equations. In particular, preserving in the discrete realm the underlying geometric, topological, and algebraic structures at
stake in differential equations has proven to be a fruitful guiding principle for discretization [1-4]. This geometric approach
has led to numerical methods, analyzed in, e.g., [5,3], that inherit a variety of properties from the continuous world, and
that surprisingly outperform their known theoretical guarantees [6]. However, geometric discretizations of elasticity, elec-
tromagnetism, or fluid mechanics have mostly been demonstrated using spaces of piecewise polynomial differential forms.
Many problems where solutions are smoothly varying in space call for a spectral numerical treatment instead, as it pro-
duces low-error, exponentially converging approximations by leveraging fast implementations of transforms such as the Fast
Fourier Transform. In an effort to provide structure-preserving numerical tools with spectral accuracy on logically rectan-
gular grids over periodic or bounded domains, we present a spectral extension of the discrete exterior calculus described
in [7-10]—and point out that the resulting computational tools extends well-known spectral collocation methods.

1.1. Review of previous work

Computational methods preserving geometric structures have become increasingly popular over the past few years, gain-
ing acceptance among both engineers and mathematicians [11]. Computational electromagnetism [7,2], mimetic (or natural)
discretizations [12,9], finite-dimensional exterior calculus (including Discrete Exterior Calculus (DEC, [13,8]), and Finite EI-
ement Exterior Calculus (FEEC, [1,3])) have all proposed discretizations that preserve vector calculus identities in order to

* Corresponding author.
E-mail address: mathieu@caltech.edu (M. Desbrun).

0021-9991/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.08.011


http://dx.doi.org/10.1016/j.jcp.2013.08.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:mathieu@caltech.edu
http://dx.doi.org/10.1016/j.jcp.2013.08.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2013.08.011&domain=pdf

D. Rufat et al. / Journal of Computational Physics 257 (2014) 1352-1372 1353

improve numerics. In particular, the relevance of exterior calculus (Cartan’s calculus of differential forms [14]) and algebraic
topology [15] to computations came to light.

Exterior calculus is a concise mathematical formalism to express differential and integral equations on smooth and
curved spaces, while revealing the geometric structures at play and clarifying the nature of the physical quantities involved.
At the heart of exterior calculus is the notion of differential forms, denoting antisymmetric tensors of arbitrary order. As
integration of differential forms is an abstraction of the measurement process, this calculus of forms provides an intrinsic,
coordinate-free approach particularly relevant to neatly describe a multitude of physical models making heavy use of line,
surface and volume integrals [16-20]. Moreover, physical measurements, such as fluxes, represent local integrations over a
small surface of the measuring instrument. Pointwise evaluation of such quantities does not have physical meaning; instead,
one should manipulate these quantities only as geometrically-meaningful entities integrated over appropriate submanifolds.

Algebraic topology, specifically the notion of chains and cochains [21,15] has been used to provide a natural discretization
of differential forms and to emulate exterior calculus on finite grids: a set of values on vertices, edges, faces, and cells are
proper discrete versions of respectively pointwise functions, line integrals, surface integrals, and volume integrals [7]. This
point of view is entirely compatible with the treatment of volume integrals in finite volume methods, or scalar functions
in finite element methods; however, it also involves the “edge elements” and “facet elements” (as first introduced in com-
putational electromagnetism) as special Hgjy and Hcyy basis elements [22]. Equipped with such discrete forms of arbitrary
degree, Stokes’ theorem connecting differentiation and integration is automatically enforced if one thinks of differentiation
as the dual of the boundary operator—a particularly simple operator on meshes. With these basic building blocks, important
structures and invariants of the continuous setting directly carry over to the discrete world, culminating in a discrete Hodge
theory [8,3]. As a consequence, such a discrete exterior calculus has already proven useful in many areas such as electro-
magnetism [7,2], fluid simulation [4,6], (re)meshing of surfaces [23,24], and graph theory [10] to mention a few. So far, only
piecewise polynomial basis functions [1,25] have been employed in these applications, thus limiting their computational
efficiency in terms of convergence rates.

1.2. Spectral methods

Spectral methods are a class of spatial discretizations of differential equations widely recognized as crucial in fluid me-
chanics, electromagnetics and other applications where solutions are expected to be smooth. Central to the efficiency of this
large family of numerical methods is the fact that the approximation of a periodic C* function by its trigonometric interpo-
lation over evenly spaced points converges faster than any polynomial order of the step size. This is sometimes referred to
as “spectral accuracy” or “super-convergence”. In practice, spectral accuracy can be achieved for bounded domains through
continuation methods [26] or using Gauss-Lobatto quadrature on Legendre or Chebyshev grids [27]. A larger number of
spectral methods have been designed, varying in the mesh they consider (primal grids only, or staggered grids [28]), and
the locations at which they enforce partial differential equations (PDE). Be it for Galerkin, Petrov-Galerkin, or collocation-
based spectral schemes, it has however been noticed that besides constructing spectrally accurate approximations of the
relevant fields and their derivatives involved in a PDE, numerically preserving conservation properties helps in obtaining
stable and/or physically adequate results [27]. Yet, numerical schemes are often proven conservative a posteriori, as a formal
approach to guarantee conservation properties by design remains elusive.

1.3. Motivations and contributions

Despite an increasingly large body of work on numerical approaches based on exterior calculus, developing a spectrally
accurate calculus of discrete forms has received very little attention—with a few recent exceptions [29-32] that we will
build upon. We present a discrete exterior calculus of differential forms on periodic or bounded domains, including wedge
product, Hodge star, and exterior derivative, all of which converge spectrally under grid refinement while utilizing fast
Fourier methods to remain computationally efficient. In order to construct a spectral representation of the operators on
differential forms, we expand the conventional tools of spectral methods to give spectrally accurate approximations of fields
for which integral values over specified domains are known—a process referred to as histopolation [29,25]. In this paper
we construct a histopolation using trigonometric polynomials on periodic domains, and consider the extension to bounded
domains using a Chebyshev grid, thereby allowing the use of the fast Fourier transform for efficient calculation.

Our work lays out a set of spectral, structure-preserving computational tools with the following distinguishing features:

o We leverage existing work in algebraic topology to discretize space through chains (linear combination of mesh el-
ements) and differential forms through cochains (discrete forms). The resulting discrete de Rham complex, that by
construction satisfies Stokes’ theorem, offers a consistent, “structure-preserving” manipulation of integrals and differen-
tials which respect important conservation laws. This approach, used mainly so far in non-spectral computations [1],
was identified in [30,31] as a significant departure in the construction of conservative schemes from traditional spectral
methods, since divergences, gradients, and curls are no longer computed through derivation but directly evaluated via
metric-independent exterior derivative without having recourse to approximations—thus exactly enforcing the diver-
gence theorem, Green’s theorem, etc.
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