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widely accepted and commercialized membrane to date and possesses excellent electro-
chemical properties below 80 °C, under highly humidified conditions. However, a decrease
inthe proton conductivity of Nafion® above 80 °C and lower humidity along with high mem-
brane cost has prompted the development of new membranes and techniques. Addition of
inorganic fillers, especially silicate-based nanomaterials, to the polymer membrane was uti-
lized to partially overcome the aforementioned limitations. This is because of the lower cost,
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Silicate easy availability, high hydrophilicity and higher thermal stability of the inorganic silicates.
Water retention Addition of silicates to the polymer membrane has also improved the mechanical, thermal
Proton conductivity and barrier properties, along with water uptake of the composite membranes, resulting
Cell performance in superior performance at higher temperature compared to that of the virgin membrane.
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However, the degrees of dispersion and interaction between the organic polymer and inor-
ganic silicates play vital roles in improving the key properties of the membranes. Hence,
different techniques and solvent media were used to improve the degrees of nanofiller dis-
persion and the physico-chemical properties of the membranes. This review focuses mainly
on the techniques of silicate-based nanocomposite fabrication and the resulting impact on
the membrane properties.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Background

Generation of power without the emission of toxic gases
is indispensable in the current scenario. The green tech-
nologies adopted for power generation include the use of
wind and water. However, such technologies are insuffi-
cient to fulfill the existing power requirements. Fuel cells
have emerged as the most promising field of research in
this realm to overcome the energy scarcity owing to their
promising clean and efficient energy conversions.

Fuel cells involve the direct conversion of chemical
energy into electrical energy through the process of elec-
trochemical oxidation. Fuel cells minimize power loses by
avoiding the intermediate steps that are required in simi-
lar diesel-powered generators. Schematic depiction of the
energy conversion steps involved in a fuel cell and diesel
engine are shown in Fig. 1. The first fuel cell was invented
by Sir William Robert Grove in 1839 and was based on
the electrochemical conversions of hydrogen and oxygen
[1-3]. This original development has fostered the creation
of several types of fuel cells including proton exchange
membrane fuel cells (PEMFC), solid oxide fuel cells, alkaline
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