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fer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer
(RAFT) polymerization providing a means for the design and synthesis of new polymeric
gene vectors with well-defined compositions, architectures and functionalities is reviewed
here. Polymeric gene vectors with different architectures, including homopolymers, block

Keywords: . .
Gene delivery copolymers, graft copolymers, and star-shaped polymers, are conveniently prepared via
Polymeric carriers ATRP and RAFT polymerization. The corresponding synthesis strategies are described in
LRP detail. The recent research activities indicate that ATRP and RAFT polymerization have
ATRP become essential tools for the design and synthesis of advanced, noble and novel gene
RAFT carriers.
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1. Introduction

Gene therapy shows much promise in therapies for
various genetic diseases and cancers, viral infection, and
cardiovascular disorders [1-9]. Gene delivery includes the
delivery of both plasmid DNA (encoding therapeutic pro-
teins) and RNA interference (RNAi) [4-11]. DNA delivery
provides a corrective action by expressing suppressor pro-
teins to suppress cancer growth or activate apoptosis, while
RNAi delivery produces gene silencing to inhibit cellu-
lar protein expression or induce apoptosis. For efficient
gene therapy, a gene carrier or vector is needed to escort
negatively charged nucleic acids through cell membranes.
The most challenging task in gene therapy is the design
of gene delivery vectors with low cytotoxicity and high
transfection efficiency. Two types of carriers are used in
gene therapy, i.e., viral and non-viral vectors. Viral vec-
tors (viruses) are effective delivery agents. However, there
are numerous safety issues related with the use of viruses,
such as immunogenicity and mutation of the host genome.
In comparison with viral vectors, cationic polymers as
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the major type of non-viral gene delivery vectors show
low host immunogenicity and high flexibility, and can be
produced onalarge scale [6-11]. Polymeric vectors as alter-
natives to viral vectors have received increasing attention
for their potential applications in a broad variety of gene-
mediated therapies.

A representative mechanism of cationic vector-based
gene delivery is shown in Scheme 1. Cationic polymers
are able to condense negatively charged nucleic acids into
positively charged polyplexes amenable to translocation
across negatively charged cell membranes. After cellu-
lar entry via endocytosis, the polymer/plasmid complexes
can undergo dissociation via endosomal escape to release
nucleic acid into the nucleus for gene expression. Such pro-
cesses can also allow different types of released RNA to
execute their biological functions inside cells [8,9]. A great
number of polycations, including polyethylenimine (PEI),
poly((2-dimethyl amino)ethyl methacrylate) (PDMAEMA),
poly(L-lysine) (PLL) and polyamidoamine (PAAM), have
been reported to be capable of delivering genes [2,4,6-8].
Among these cationic polymers, PEl homopolymers are

Cell membrane

Scheme 1. Representative mechanism of cationic vector-based gene delivery.
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