
A hybrid (Monte Carlo/deterministic) approach for multi-dimensional
radiation transport

Guillaume Bal a,1, Anthony B. Davis b,c,2, Ian Langmore a,⇑
a Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd Building, 500 W. 120th Street, New York, NY 10027, USA
b Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-237, Pasadena, CA 91109, USA
c Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106-4030, USA

a r t i c l e i n f o

Article history:
Received 19 June 2010
Received in revised form 8 May 2011
Accepted 25 June 2011
Available online 5 July 2011

Keywords:
Linear transport
Monte Carlo
Hybrid methods
Importance sampling
Variance reduction
3D rendering
Remote sensing

a b s t r a c t

A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumi-
nation, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a
small detector located in the sky (mounted on a satellite or a airplane). It uses a determin-
istic approximation of an adjoint transport solution to reduce variance, computed quickly
by ignoring atmospheric interactions. This allows significant variance and computational
cost reductions when the atmospheric scattering and absorption coefficient are small.
When combined with an atmospheric photon-redirection scheme, significant variance
reduction (equivalently acceleration) is achieved in the presence of atmospheric
interactions.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation and background

Forward and inverse linear transport models find applications in many areas of science including neutron transport [1–3],
medical imaging and optical tomography [4,5], radiative transfer in planetary atmospheres [6–8] and in oceans [9,10], as
well as the propagation of seismic waves in the solid Earth [11]. In this paper, we focus on the solution of the forward trans-
port problem by the Monte Carlo (MC) method with, as our main application, remote sensing (an inverse transport problem)
of the atmosphere/surface system [12]. In our demonstration, light is emitted from the Sun and propagates in a complex
environment involving absorption and scattering in the atmosphere and reflection at the Earth’s surface before (a tiny frac-
tion of) it reaches a narrowband detector, typically mounted on a airplane or a satellite.

The integro-differential transport Eq. (1) may be solved numerically in a variety of ways. Monte Carlo (MC) simulations
model the propagation of individual photons along their path and are well adapted to the complicated geometries encoun-
tered in remote sensing. Photons scatter and are absorbed with prescribed probability depending on the underlying medium.
The output from the simulation, e.g., the fraction of photons that hit a detector, is the expected value of a well-chosen
random variable. These simulations are very easy to code, embarrassingly parallel to run, and suffer (in principle) no
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discretization error. The drawback is that they can be very slow to converge. MC methods converge at a rate (variance/N)1/2

where N is the number of simulations, and the variance is that of each photon fired. In remote sensing, the (relative) variance
is high in large part because the detector is typically small and thus most photons are not recorded by the detector. In order
to be effective, even in a forward simulation, MC methods must be accelerated.

One approach to speedup MC simulations is to use quasi-Monte Carlo methods, which steepen the convergence rate from
�N�1/2 to a more negative exponent. However, most MC speedup efforts focus on reducing the variance of each photon. See
[2,3] or the review of more recent work on neutron transport in [14,15,13] and on 3D atmospheric radiative transfer in
[16,17]. See also [18] for a thorough introduction to the MC techniques, including variance reduction, used in computer
graphics. In problems with a small detector, this is achieved by directing photons toward that detector, and re-weighting
to keep calculations unbiased. When survival-biasing is used, photons have their weight decreased rather than being ab-
sorbed [2,3].3 Often, one uses some heuristic (such as proximity to the detector), or some function to measure the ‘‘importance’’
of each region of phase space. In splitting methods [2,3], the photon is split into two or more photons upon identifying that a
photon is in a region of high importance. The weight of each photon is then decreased proportionately. Propagating many
photons with a low weight is not desirable, therefore splitting is often accompanied by Russian roulette. Here, if a photon enters
a region of low enough importance, then the photon is terminated with a certain probability, i.e., high chance of absorption if
the weight is low; in the rarer alternative outcome of the Bernoulli trial, the weight is increased to keep the simulation numer-
ically unbiased. So there is typically a slight cost in variance to improve efficiency (by terminating low-weighted trajectories).
Typically a weight window is used to enforce regions of low/high importance. Source biasing techniques change the source
distribution in order to more effectively reach the detector. More generally, the absorption and scattering properties at any
point can be modified, provided photons are re-weighted correctly.

It has long been recognized that the adjoint transport solution is a natural importance function [19,2,3,20–22,14,23,15].
One can use approximations of the adjoint solution—typically a coarse deterministic solution—to reduce variance. The result
is a hybrid method (deterministic and MC). The AVATAR method uses an adjoint approximation to determine weight win-
dows [22]. The CADIS scheme in [14] uses an adjoint approximation in both source biasing and weight-window determina-
tion. An adaptive technique that successively refines the solution in ‘‘important’’ regions, using the adjoint to designate such
regions, is described in [24,25]. In [19,2,3,20], a zero-variance technique is outlined that uses the true adjoint solution to
launch photons that all reach the detector with the same weight . . .which happens to be the correct answer. This method
is of course impractical since determining the exact adjoint solution everywhere is harder than determining some specific
integral of that solution, which is usually the goal of a MC simulation. The LIFT method [20,21] therefore uses an approxi-
mation of the adjoint solution to approximate this zero-variance method.

We adapt the zero-variance technique to the particular problem we have at hand; see Fig. 1 for the type of geometry con-
sidered in this paper. The problem we consider has a fixed, partially-reflective, complex-shaped lower boundary, and rela-
tively large mean-free-path (MFP) in the sense that a large fraction of the photons reaching the detector have not scattered
inside the (optically thin) atmosphere. Calculation of the approximate adjoint solution used to emulate zero-variance tech-
niques is difficult and potentially very costly. What we demonstrate in this paper is that partial, ‘‘localized’’ (in an appropri-
ate sense) knowledge of the adjoint solution still offers very significant variance reductions. More specifically, we calculate
adjoint solutions that accurately account for the presence of the boundary but do not account for atmospheric scattering
(infinite MFP limit). The computation of the adjoint solution thus becomes a radiosity problem with much reduced dimen-
sionality compared to the full transport problem. This, of course, can only reduce variance in proportion to the number of

Fig. 1. Mountain (1 � cos3x shape), cloud, sky, and detector. Dot size indicates relative adjoint flux strength. Large dots on right-hand-side are the detector
(dot size is down-scaled for detector). Dot size on mountain indicates that portions of the mountain are shaded from the detector, and that the surface
albedo is varying. See Section 3.1 for specifics, as used in the present study.

3 Note the somewhat confusing terminology: on the one hand, a method is statistically biased if the expected outcome is not the intended one. On the other,
the practice of re-directing photons in favorable directions and/or reducing the number of scattering events is also called biasing. In the latter case the photon
has its weight adjusted so that the simulation is unbiased.
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