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a b s t r a c t

We present a validation study for the hybrid particle-mesh vortex method against a
pseudo-spectral method for the Taylor–Green vortex at ReC = 1600 as well as in the colli-
sion of two antiparallel vortex tubes at ReC = 10,000. In this study we present diagnostics
such as energy spectra and enstrophy as computed by both methods as well as point-wise
comparisons of the vorticity field. Using a fourth order accurate kernel for interpolation
between the particles and the mesh, the results of the hybrid vortex method and of the
pseudo-spectral method agree well in both flow cases. For the Taylor–Green vortex, the
vorticity contours computed by both methods around the time of the energy dissipation
peak overlap. The energy spectrum shows that only the smallest length scales in the flow
are not captured by the vortex method.

In the second flow case, where we compute the collision of two anti-parallel vortex tubes
at Reynolds number 10,000, the vortex method results and the pseudo-spectral method
results are in very good agreement up to and including the first reconnection of the tubes.
The maximum error in the effective viscosity is about 2.5% for the vortex method and about
1% for the pseudo-spectral method. At later times the flows computed with the different
methods show the same qualitative features, but the quantitative agreement on vortical
structures is lost.

� 2010 Elsevier Inc. All rights reserved.

1. Background

Vortex methods are arguably the first numerical method used for the simulation of vortical flows starting with the hand-
calculations of Rosenhead in the beginning of last century [1]. Vortex methods were considered as the method of choice for
external flows with compact vorticity [2] due to their low numerical dissipation and they were among the first techniques
used for simulations of 3D vortical flows [3–5]. In recent years it was realized [6] that the accuracy of the method hinges on
the use of a regularisation procedure to remedy the inaccuracies due to the distortion of the computational elements which
follows from their Lagrangian adaptivity. In the remeshed vortex method (rVM) [7–9], Lagrangian vortex particles are used
to simulate the convective part of the equations and particles are mapped onto grid nodes at each time step so as to ensure
the convergence of the method and to compute efficiently the solution of the Poisson equation that determines their velocity.
This gives the rVM some inherent advantages over other methods, such as its adaptivity and the lack of a CFL restriction on
the timestep, which allows large timesteps during the simulation. It is important to note that the use of a grid based solver
for the Poisson equation accommodates a wide range of boundary conditions that may not be possible when using tech-
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niques such as the Fast Multipole Method [10]. We are interesting in exploiting these advantages for high Reynolds number
(ReC = 10,000) vortical flows while retaining the accuracy of the results. The method has already successfully been used to
perform direct numerical simulations up to ReC = 7500 [11,12]. To this end, we will compare our remeshed vortex method
with a pseudo-spectral method. The pseudo-spectral method is well suited for the simulation of high Reynolds number flows
in simple domains and can be considered as a reference method. The goal of the current study is to validate the vortex meth-
od as an accurate and fast alternative to the pseudo-spectral method for high Reynolds number flow cases.

The first study of comparing the vortex method with the pseudo-spectral method was undertaken by Cottet et al. [13]. In
that study, the comparison was performed for isotropic turbulence in a periodic box at initial Rek � 100, and for the recon-
nection of two vortex tubes at ReC = 3500. In the last case the flow was still laminar. For both cases it was found that the
vortex method resolves the large- and medium scales in the flow well. In addition, the simulation of isotropic turbulence
showed that the vortex method does not suffer from accumulation of energy in the tail of the energy spectrum, whereas
the spectral method does. Furthermore, an underresolved flow simulation of the colliding vortex tubes showed that the
pseudo-spectral method generates spurious vortex structures, but with the vortex method the large scales are still ade-
quately resolved and no spurious vorticity appears. In a recent work by Cocle et al. [14] a vortex method and a pseudo-spec-
tral code are used to compare various multiscale subgrid models in LES of homogeneous isotropic turbulence. They report
little difference between the two methods in the obtained spectra when using the same subgrid model.

In this study we focus on the accuracy of the vortex method at higher Reynolds numbers than in [13], and we study the
effect of employing a higher order remeshing kernel in the remeshed vortex method. The paper is organized as follows. First
we describe the methods used in this study. Then we report on the simulation results for a Taylor–Green vortex at
ReC = 1600. Finally we move on to a flow case at ReC = 10,000 and describe the comparison between the vortex method re-
sults and the pseudo-spectral method results.

2. Governing equations and numerical method

2.1. Vortex method

The evolution of viscous incompressible flow is considered as described by the Navier–Stokes equations in Lagrangian
vorticity form:

Dx
Dt
¼ ðx � rÞuþ mDx; ð1Þ

and

DW ¼ r� u ¼ �x; ð2Þ

where W is the vector streamfunction.
The equations are discretized using a remeshed vortex method (rVM). In the traditional vortex particle method, the vor-

ticity field is approximated using particles:

xðx; tÞ �
X

p

CpðtÞf�ðx� xpðtÞÞ; ð3Þ

where Cp(t) and xp(t) denote the particle strength and particle position, respectively, of the pth particle at time t. In our hy-
brid formulation of the vortex particle method, the kernel function f� is used for interpolation between the particles and the
grid (see the next subsection). To compute the Fourier-transform of our quantities, we assume a Fourier interpolation on the
grid rather than using Eq. (3).

Discretizing the Navier–Stokes equations with particles results in a set of ordinary differential equations (ODEs) for the
particle strengths and the particle positions:

dCp

dt
¼ vpðx � rhÞuþ mDhCp; ð4Þ

dxp

dt
¼ uðxp; tÞ: ð5Þ

Here vp = h3 are the particle volumes. These differential equations are integrated in time using either a low-storage third
order Runge–Kutta method [15] (RK3), or a fourth order Runge–Kutta method (RK4). The discretized operator for the viscous
term is evaluated with a centered fourth-order finite difference scheme. The stretching term is rewritten in its transpose for-
mulation xk@uk/@xi, and is discretized with fourth order finite differences. Every timestep the particles are remeshed onto a
uniform Cartesian grid to enforce that the particles always overlap. In this way the occurrence of spurious vortical structures
is prevented and convergence of the method is ensured [16,7]. The velocities are computed from the vorticity by solving Eq.
(2) in Fourier space on the grid. This ensures that the velocity field is spectrally divergence-free. To ensure a divergence-free
vorticity field (r�x = 0), a solenoidal reprojection based on the Helmholtz decomposition of the vorticity field is done in
spectral space every 5–10 timesteps.
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