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Article history: We propose a method for the approximation of solutions of PDEs with stochastic coeffi-
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done by using any legacy code for the deterministic problem as a black box. The method
converges in probability (with probabilistic error bounds) as a consequence of sparsity
and a concentration of measure phenomenon on the empirical correlation between sam-
ples. We show that the method is well suited for truly high-dimensional problems.
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1. Introduction

Realistic analysis and design of complex engineering systems require not only a fine understanding and modeling of the
underlying physics and their interactions, but also a significant recognition of intrinsic uncertainties and their influences on
the quantities of interest. Uncertainty Quantification (UQ) is an emerging discipline that aims at addressing the latter issue;
it aims at meaningful characterization of uncertainties in the physical models from the available measurements and efficient
propagation of these uncertainties for a quantitative validation of model predictions.

Despite recent growing interests in UQ of complex systems, it remains a grand challenge to efficiently propagate uncer-
tainties through systems characterized by a large number of uncertain sources where the so-called curse-of-dimensionality
is yet an unsolved problem. Additionally, development of non-intrusive uncertainty propagation techniques is of essence as
the analysis of complex multi-disciplinary systems often requires the use of sophisticated coupled deterministic solvers in
which one cannot readily intrude to set up the necessary propagation infrastructure.

Sampling methods such as the Monte Carlo simulation and its several variants had been utilized for a long time as the
primary scheme for uncertainty propagation. However, it is well understood that these methods are generally inefficient
for large-scale systems due to their slow rate of convergence. There has been an increasing recent interest in developing
alternative numerical methods that are more efficient than the Monte Carlo techniques. Most notably, the stochastic Galer-
kin schemes using Polynomial Chaos (PC) bases [38,28,67,2,63] have been successfully applied to a variety of engineering
problems and are extremely useful when the number of uncertain parameters is not large. In their original form, the stochas-
tic Galerkin schemes are intrusive, as one has to modify the deterministic solvers for their implementation. Stochastic collo-
cation schemes [58,45,66,1,51] belong to a different class of methods that rely upon (isotropic) sparse grid integration/
interpolation in the stochastic space of the problem to reduce the curse-of-dimensionality associated with the conventional
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tensor-product integration/interpolation rules. As their construction is primarily based on the input parameter space, the
computational cost of both stochastic Galerkin and collocation techniques increases rapidly for large number of independent
input uncertainties.

More recently, efforts have been made to construct solution-adaptive uncertainty propagation techniques that exploit any
structures in the solution to decrease the computational cost. Among them are the multi-scale model reduction of [33] and
the sparse decomposition of [60,8,6,7] for the stochastic Galerkin technique, adaptive sparse regression approaches of
[10,11] for PC expansions, anisotropic and adaptive sparse grids of [50,44] for the stochastic collocation scheme, and the
low-rank solution approximations of [52,53,34].

In the present study, we are interested in cases where the quantity of interest is sparse at the stochastic level, i.e., it can be
accurately represented with only few terms when linearly expanded into a stochastic, e.g., polynomial chaos, basis. Interest-
ingly, sparsity is salient in the analysis of high-dimensional problems where the number of energetic basis functions (those
with large coefficients) is small relative to the cardinality of the full basis. For instance, it has been shown in [60,8] that, un-
der some mild conditions, solutions to linear elliptic stochastic PDEs with high-dimensional random coefficients admit
sparse representations with respect to the PC basis. Consequently, an approach based on a zero-dimensional algebraic sto-
chastic problem has been proposed in [8] to detect the sparsity pattern, which then guides the stochastic Galerkin analysis of
the original problem. Moreover, a “quasi”’-best N-term approximation for a class of elliptic stochastic PDEs has been pro-
posed in [7].

In this work, using concentration of measure inequalities and compressive sampling techniques, we derive a method for PC
expansion of sparse solutions to stochastic PDEs. The proposed method is

o Non-intrusive: it is based on the direct random sampling of the PDE solutions. This sampling can be done by using any
legacy code for the deterministic problem as a black box.

o Non-adapted: it does not tailor the sampling process to identify the important dimensions at the stochastic level.

e Provably convergent: we obtain probabilistic bounds on the approximation error proving the stability and convergence of
the method.

e Well-suited to problems with high-dimensional random inputs.

Compressive sampling is an emerging direction in signal processing that aims at recovering sparse signals accurately (or
even exactly) from a small number of their random projections [20,21,17,30,15,18,16,22,14]. A sparse signal is simply a sig-
nal that has only few significant coefficients when linearly expanded into a basis, e.g., {{/4]}.

For sufficiently sparse signals, the number of samples needed for a successful recovery is typically less than what is re-
quired by the Shannon-Nyquist sampling principle. Generally speaking, a successful signal reconstruction by compressive
sampling is conditioned upon:

o Sufficient sparsity of the signal; and
e Incoherent random projections of the signal.

A square-measurable stochastic function u(w), defined on a suitable probability space (2, F,P) can be expanded into a
mean-squared convergent series of the chaos polynomial bases, i.e., u(w) ~ Y ,cay,(w), with some cardinality P. The sto-
chastic function u(w) is then sparse in PC basis {1/}, if only a small fraction of coefficients c, are significant. In this case,
under certain conditions, the sparse PC coefficients ¢ may be computed accurately and robustly using only N < P random
realizations of u(w) via compressive sampling. Given N random samples of u(w), compressive sampling aims at finding
the sparsest (or nearly sparsest) coefficients ¢ from an optimization problem of the form

(Pss) : min||We||, subject to |¥c-—ul, <3, (1)
c

where ||Wc||s, with s = {0,1} and some positive diagonal weight matrix W, is a measure of the sparsity of cand ||¥c¢ — u||, is a
measure of the accuracy of the truncated PC expansion in estimating the u(w) samples. The N-vector u contains the inde-
pendent random samples of u(w) and the rows of the N x P matrix W consist of the corresponding samples of the PC basis
{Yal.

Throughout the rest of this manuscript, we will elaborate on the formulation of the compressive sampling problem (1)
and the required conditions under which it leads to an accurate and stable approximation of an arbitrary sparse stochastic
function as well as sparse solutions to linear elliptic stochastic PDEs. Although we choose to study this particular class of
stochastic PDEs, we stress that the proposed algorithms and theoretical developments are far more general and may be read-
ily applied to recover sparse solution of other stochastic systems.

In Section 2, we describe the setup of the problem of interest for which numerical experiments are performed. We then, in
Section 3, lay out the main contributions of the present work. In particular, the approximation of sparse stochastic functions
as well as the elliptic stochastic PDEs using the compressive sampling technique are introduced in Sections 3.2-3.4. Sections
3.5 and 3.6 discuss some of the implementation details of the present technique. To demonstrate the accuracy and efficiency
of the proposed procedures, in Section 4, we perform two numerical experiments on 1-D (in space) linear elliptic stochastic
differential equations with high-dimensional random diffusion coefficients.
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