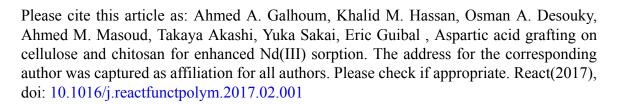
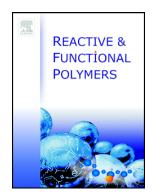
Accepted Manuscript

Aspartic acid grafting on cellulose and chitosan for enhanced Nd(III) sorption

Ahmed A. Galhoum, Khalid M. Hassan, Osman A. Desouky, Ahmed M. Masoud, Takaya Akashi, Yuka Sakai, Eric Guibal


PII: S1381-5148(17)30015-9

DOI: doi: 10.1016/j.reactfunctpolym.2017.02.001


Reference: REACT 3799

To appear in: Reactive and Functional Polymers

Received date: 6 January 2017 Revised date: 2 February 2017 Accepted date: 5 February 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Aspartic acid grafting on cellulose and chitosan for enhanced Nd(III) sorption

Ahmed A. Galhoum, ^{a,b} Khalid M. Hassan, ^c Osman A. Desouky, ^a Ahmed M. Masoud, ^a

Takaya Akashi, ^d Yuka Sakai, ^d Eric Guibal ^{b*}

^aNuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.

^bEcole des Mines Alès, Centre des Matériaux des Mines d'Alès, 6 avenue de Clavières, Alès cedex, France.

^cPhysics and Mathematics Engineering Department, Faculty of Electronic Engineering, Menoufia University, Egypt.

^dFaculty of Bioscience and Applied Chemistry, Hosei University, Japan.

Abstract: Cellulose and chitosan have intrinsic sorption properties for Nd(III); however, their efficiency for metal recovery can be easily improved by a relatively simple chemical modification. The grating of aspartic acid via an intermediary chlorination step of the polysaccharides allows increasing sorption capacities due to the specific reactivity of carboxylate groups. The grafting process is confirmed by elemental analysis, FTIR spectrometry, while the physical properties of the derivatives are characterized by XRD (crystallinity) and TGA (thermogravimetric analysis). The sorption properties are carried out by investigating the effect of the pH, studying the uptake kinetics and the evaluating the thermodynamics (sorption isotherms). The sorption properties of modified sorbents are systematically compared to the performance of raw materials. Sorption capacity is doubled after grafting aspartic acid onto biopolymer backbone. Sorption isotherms are described by the Freundlich and the Langmuir equation and maximum sorption capacities reach up to 77-80 mg Nd g⁻¹ at pH 5. The uptake kinetics are described by the pseudo-first order reaction rate and under selected experimental conditions the equilibrium is reached within 3 hours of contact. The sorption is spontaneous, endothermic. Metal desorption can be successfully performed with 0.5 M nitric acid and the sorbents can be recycled for at least 4 sorption/desorption cycles without significant loss in sorption/desorption performances.

Keywords: neodymium; sorption isotherms; uptake kinetics; metal desorption; thermodynamics; aspartic acid grafting; chemical modification of biopolymers.

Download English Version:

https://daneshyari.com/en/article/5209402

Download Persian Version:

https://daneshyari.com/article/5209402

<u>Daneshyari.com</u>