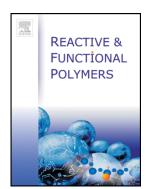
Accepted Manuscript

Structure of hydrogen bonded supramolecular self-assembles controlled by the structure of monomers: 1,1- and 1,3-diethylureas

Jolanta Świergiel, Jan Jadżyn


PII: S1381-5148(16)30119-5

DOI: doi: 10.1016/j.reactfunctpolym.2016.06.002

Reference: REACT 3710

To appear in:

Received date: 11 March 2016 Revised date: 25 April 2016 Accepted date: 6 June 2016

Please cite this article as: Jolanta Świergiel, Jan Jadżyn, Structure of hydrogen bonded supramolecular self-assembles controlled by the structure of monomers: 1,1- and 1,3-diethylureas, (2016), doi: 10.1016/j.reactfunctpolym.2016.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1

Structure of hydrogen bonded supramolecular self-assembles controlled by the structure of monomers: 1,1- and 1,3- diethylureas

Jolanta Świergiel*, Jan Jadżyn

Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, PL-60-179 Poznań, Poland

Asymmetrically disubstituted 1,1-diethylurea, the moiety HNH-CO of which is capable of forming intermolecular hydrogen bonds with the possibility of creating two extremely different supramolecular entities: *i*) highly polar polymeric chains, analogous to those created by secondary amides, and *ii*) non-polar cyclic dimers, analogous to those created by lactams, in the experiment reveals exclusively the cyclic dimers. A solution of 1,1-diethylurea in non-polar solvent (with the mole fraction of urea 0.04) exhibits very low permittivity (about 3) what is in marked contrast to the permittivity (about 11) of analogous solution of symmetrically disubstituted 1,3-diethylurea, known for its strong chain polymerization. The difference of two orders of magnitude in the electrical conductivities of 1,1- and 1,3-diethylurea (ionically undoped) solutions suggests a probable participation in the conductivity of the protons released in process of thermal rupture of the hydrogen bonds linking 1,3-diethylurea molecules in supramolecular polymeric chains.

Keywords:

Supramolecular polymers, 1,1-diethylurea, 1,3-diethylurea, Impedance spectroscopy, Hydrogen bonding

*Corresponding author

E-mail address: swiergiel@ifmpan.poznan.pl (J. Świergiel)

Download English Version:

https://daneshyari.com/en/article/5209548

Download Persian Version:

https://daneshyari.com/article/5209548

<u>Daneshyari.com</u>