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Abstract

This paper introduces a novel approach for rapidly computing a very large number of geodesics on a smooth surface.
The idea is to apply the recently developed phase flow method [L. Ying, E.J. Candès, The phase flow method, J. Comput.
Phys., to appear], an efficient and accurate technique for constructing phase maps for nonlinear ordinary differential equa-
tions on invariant manifolds, which are here the unit tangent bundles of the surfaces under study. We show how to rapidly
construct the whole geodesic flow map which then allows computing any geodesic by straightforward local interpolation,
an operation with constant complexity. A few numerical experiments complement our study and demonstrate the effective-
ness of our approach.
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1. Introduction

1.1. The problem

This paper introduces a new method for rapidly computing the geodesic flow on smooth and compact sur-
faces. Suppose that Q is a smooth surface, then the geodesics of Q obey certain types of differential equations,
which may take the form

dy

dt
¼ F ðyÞ; y ¼ y0; ð1:1Þ

y :¼ (x,p) where x is a running point on the surface Q, and p is a point in the tangent space so that p(t) is the vector
tangent to the geodesic at x(t). Standard methods for solving such ordinary differential equations (ODEs) are
based on local ODE integration rules such as the various Runge–Kutta methods. Typically, one chooses a small
step size s and makes repeated use of the local integration rule. If one wishes to integrate the equations up to time
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T, the accuracy is generally of the order of sa – a is called the order of the local integration rule – and the com-
putational complexity is of the order of T/s, i.e. proportional to the total number of steps.

In many problems of interest, one would like to trace a large number of geodesics. Expressed differently,
one would like to integrate the system (1.1) for many different initial conditions. Examples arising from geo-
metric modeling and computational geometry include mesh parameterization, the segmentation of a surface
into several components, shape classification [6], and the interpolation of functions defined on surfaces [18].
The range of applications are of course not limited to computer graphics and spans many areas of science
and engineering – especially computational physics and computational mechanics. Consider an arbitrary
dynamical system with holonomic constraints. Then it is often the case that the particle trajectories are the
geodesics of the smooth manifold defined by these constraints. In the theory of general relativity, the trajectory
of a free particle is the spatial projection of a geodesic traced on the curved four-dimensional space–time man-
ifold. In order to understand the underlying dynamics of these physical problems, one often calculates a large
number of trajectories which are nothing else than geodesics.

An interesting application which involves computing a large number of geodesics and will be studied in this
paper comes from the field of high-frequency wave propagation. Suppose that a smooth body is ‘‘illuminated’’
by an incoming planar wave with an arbitrary direction of propagation. We wish to compute the scattered
wavefield. Now the geometric theory of diffraction [8] asserts that straight diffraction rays are emitted from
the so-called creeping rays. A creeping ray is a geodesic curve on the scatterer which starts from a point on
the shadow line and whose initial tangent is parallel to the orientation of the incoming planar wave. To com-
pute the scattered field then, one needs to trace as many geodesics as there are points on the various shadow
lines, see Section 2.4 for more details.

In many of these problems, standard methods tracing geodesic curves one by one may be computationally
very expensive, and in this paper we introduce a fast and accurate method for computing the whole geodesic
flow map over the surface. Our strategy is built upon the phase flow method [19], a newly established method
for solving system (1.1) which we review next.

1.2. The phase flow method

Suppose that we are given the system of ordinary differential equation (1.1), where the vector field F:
Rd! Rd is assumed to be smooth. For a fixed time t, the map gt: Rd! Rd defined by gt(y0) = y(t,y0) is called
the phase map, and the family {gt, t 2 R} of all phase maps – which forms a one parameter family of diffeo-
morphisms – is called the phase flow. A manifold M � Rd is said to be invariant if gt(M) � M. In many situ-
ations, we are interested in the restriction of the phase flow on an invariant manifold.

We wish to compute the solutions y(T,y0) of the system (1.1) with many initial conditions y0. Rather than
integrating the system one ray at a time, we integrate (1.1) for all the initial conditions at once. The approach
consists of two steps:

� First, construct an approximation ~gT to the phase map gT at time T.
� Second, for each y0, the solution y(T,y0) is calculated by simply evaluating ~gT ðy0Þ.

The main difficulty is in the construction of ~gT . Specifically, we need (1) to construct ~gT efficiently and accu-
rately and (2) to represent ~gT in a way allowing fast evaluation, which is equally important. This is exactly
what the phase flow method achieves.

Algorithm 1 (The phase flow method [19]).

1. Parameter selection. Select a grid size h > 0, a time step s > 0, and an integer constant S P 1 such that
B = (T/s)1/S is an integer power of 2.

2. Discretization. Select a uniform or quasi-uniform grid Mh � M of size h.
3. Burn-in. Compute ~gs. For y0 2Mh, ~gsðy0Þ is calculated by applying the ODE integrator (single time step of

length s). Then construct a local interpolant based on these sampled values, and for y0 62Mh, define ~gsðy0Þ
by evaluating the interpolant at y0.
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