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Abstract

High order finite difference approximations are derived for the second order wave equation with discontinuous coef-
ficients, on rectangular geometries. The discontinuity is treated by splitting the domain at the discontinuities in a multi
block fashion. Each sub-domain is discretized with compact second derivative summation by parts operators and the
blocks are patched together to a global domain using the projection method. This guarantees a conservative, strictly
stable and high order accurate scheme. The analysis is verified by numerical simulations in one and two spatial
dimensions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For wave propagating problems, the computational domain is often large compared to the wavelengths,
which means that waves have to travel long distances during long times. As a result, high order accurate
time marching methods, as well as high order spatially accurate schemes (at least third order) are required.
Such schemes, although they might be G-K-S stable [11] (convergence to the true solution as Ax — 0),
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may exhibit a non-physical growth in time [3], for realistic mesh sizes. It is therefore important to devise
schemes that do not allow a growth in time that is not called for by the differential equation. Such
schemes are called strictly (or time) stable.

In many applications, like general relativity [29], seismology and acoustics, the underlying equations are
systems of second order hyperbolic partial differential equations. However (as pointed out in [15]), with very
few exceptions, the equations are rewritten and solved on first order form. There are three obvious drawbacks
with this approach, namely (i) we double the number of unknowns, (ii) we might introduce spurious
oscillations (due to unresolved features), and (iii) we need twice as many grid points (both in time and in each
of the spatial dimensions) to obtain the same accuracy. The reasons for solving the equations on first order
form are probably due to the fact that computational methods for first order hyperbolic systems are very well
developed, and they are naturally more suited for complex geometries.

For acoustic and electromagnetic wave propagation, staggered grid discretizations are very popular [6,31]
since that avoids (ii) and (iii) above. Note however (again see [15]) that staggering in both time and space is
more or less equivalent to solving the system of equations on second order form. One major disadvantage is
that staggered grids do not have the summation by parts (SBP) property and that can lead to complications at
boundaries and internal interfaces, especially for high order discretizations. To retain high order accuracy for
problems with discontinuities in the coefficients is another concern [12,13,7].

The methods discussed above all solve the equations on first order form. Difference approximations have
previously been derived [15,16,25,1,5] for the second order wave equation, without first writing it as a first
order system. For problems with discontinuous coefficients at most second order accuracy have been recov-
ered [1,5,13].

The second derivative terms have received little attention, especially concerning the stability issues for high
order approximations [2]. Finite difference operators approximating second derivatives and satisfying a sum-
mation by parts rule, have previously been derived [20] for the 4th, 6th and 8th order case, with the emphasis
on strictly stable formulations to mixed hyperbolic—parabolic problems.

One major advantage of using SBP operators [17,18,27] to discretize the equations on a multi block domain
is that we can mimic the boundary and interface terms from the underlying continuous problem. Given the
continuous boundary and interface conditions (i.e., the physics) in combination with the simultaneous approx-
imation term (SAT) method [3,4,21,22] or the projection method [23,24] we can obtain completely analogous
conservation and stability properties as for the underlying partial differential equation (PDE). This should
attract physicists to employ this technique for a range of applications. In general relativity for example, the
SBP operators combined with the SAT technique have now been successfully implemented [8,19] for system
of equations on first order form (in time).

In this paper we will show how a certain class of the recently developed compact and high order accurate
second derivative SBP operators [20] can be combined with the projection method for implementing general
boundary and interface conditions. On piecewise rectangular domains we show that this technique leads to
strictly stable and high order accurate schemes for the wave equation on second order form and discontinuous
media. We will also show that the projection method requires special treatment at corners and block interfaces
in two dimensions.

We focus on geometrically relative simple problems with piecewise constant coefficients and aim for high
accuracy. Typical applications where this technique is appropriate include long range underwater acoustics
(layers of air, water and soil), various seismological problems (layers of rock, water and possibly oil) as
well as electromagnetic problems (wave guides and printed circuit boards). Complex geometries, varying
coefficients and also the problem with absorbing boundary conditions [30,14] will not be addressed in this
paper.

In Section 2 we introduce some definitions and discuss the SBP property for the second derivative. In Sec-
tion 3 we consider the second order wave equation in one dimension (1-D) and show how the projection
method and the SBP operators can be combined to obtain strictly stable schemes for problems with discon-
tinuous coefficients. In Section 4 we consider the two-dimensional (2-D) problem. In Section 5 we describe a
compact and explicit high order accurate time marching method that involves only two time levels. In Section
6, computations are done and in 7 conclusions are drawn. The SBP operators used in the computations are
presented in Appendix II.
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